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Abstract: Diabetes is a globally important chronic disease. Existing prediction and diagnosis methods 

face challenges in processing high-dimensional, heterogeneous medical data, including limited feature 

extraction capabilities and poor model interpretability. To address these challenges, this paper proposes 

a novel mathematical machine learning hybrid model that integrates a graph neural network (GNN) with 

multi-view feature fusion and adaptive sparse regularization. Methodologically, multi-source clinical 

data (including genetic, metabolic, and lifestyle features) is normalized, and missing values are imputed. 

A heterogeneous feature graph structure is constructed through multi-view feature grouping. A graph 

neural network is used to capture the complex relationships between various features. Adaptive sparse 

regularization is then introduced to improve model generalization and key feature identification. Finally, 

the GNN output is weightedly fused with the results of a traditional deep neural network (DNN), and 

ensemble learning is used to optimize overall performance. Experimental validation on the UCI diabetes 

dataset demonstrates that the proposed model achieves an accuracy of 82.9% and an AUC of 0.89. This 

novel hybrid model effectively improves the accuracy and interpretability of diabetes risk prediction, 

providing stronger data support for clinical decision-making. 

Keywords: Diabetes, Graph Neural Network, Multi-view Feature Fusion, Adaptive Sparse 

Regularization, Ensemble Learning 

1. Introduction 

Diabetes has become a major chronic disease threatening public health worldwide, resulting in high 

morbidity and disability rates and placing a significant burden on healthcare systems. Its pathogenesis is 

complex, influenced by multiple factors such as genetics, metabolism, and lifestyle, and patients vary 

significantly. The extensive accumulation of medical big data provides a rich information foundation for 

diabetes risk prediction and early diagnosis. However, the high-dimensionality and highly heterogeneous 

nature of clinical data poses significant challenges to traditional modeling approaches. Accurately 

extracting effective information from multi-source features and exploring the underlying complex 

relationships between them are key steps in achieving intelligent risk assessment and personalized 

intervention. 

To address this challenge, this paper combines graph neural networks with multi-view feature fusion 

and adaptive sparse regularization to construct a novel mathematical machine learning hybrid model 

focused on improving the understanding and utilization of multimodal clinical data. By grouping 

heterogeneous features and modeling graph structures, the model captures deep interactions between 

different types of features. The adaptive sparsity mechanism automatically selects the most 

discriminative key variables, significantly enhancing the model's generalization and interpretability. 

Weighted integration of multiple model outputs further optimizes overall performance, providing a 
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technical approach with both theoretical and practical value for complex disease risk prediction. 

This paper's innovation lies in the organic integration of heterogeneous graph neural networks, deep 

feature fusion, and regularization techniques, systematically addressing the dual challenges of feature 

interaction modeling and feature selection in high-dimensional, heterogeneous diabetes data. The model 

not only efficiently captures nonlinear relationships between multiple factors but also significantly 

improves the clinical interpretability of risk prediction results, providing a solid data and algorithmic 

foundation for intelligent decision-making and personalized management in the context of precision 

medicine. 

2. Related work 

The incidence of diabetes continues to rise, and related research continues to deepen. Clinical trials 

and epidemiological surveys targeting different populations, diagnosis and treatment methods are 

emerging in an endless stream. The following literature reviews the latest research progress in the 

diagnosis, treatment, management and complications of diabetes, providing a theoretical basis and 

practical reference for this study. Cheng [1] selected 100 diabetic patients admitted to Cangshan Town 

Health Center, Cangshan District, Fuzhou City from July 2023 to July 2024, and divided them into an 

observation group (50 cases, biochemical tests) and a control group (50 cases, routine urine tests) by 

lottery, and compared the test accuracy, misdiagnosis rate, missed diagnosis rate, detection results, 

sensitivity and specificity. Pei et al. [2] compared the physical activity of previously diagnosed patients 

with type 2 diabetes mellitus (T2DM) and screen-diagnosed patients with normal blood sugar in the 

community of Songjiang District, Shanghai, to provide a basis for early screening and management of 

diabetes. Wang [3] selected 100 newly diagnosed patients with type 2 diabetes who were treated at the 

Changqiao Street Community Health Service Center in Xuhui District, Shanghai from January 2023 to 

January 2024 as research subjects and randomly divided them into a control group and an observation 

group, with 50 cases in each group. The control group was treated with metformin hydrochloride, and 

the observation group was treated with linagliptin on the basis of the control group. The treatment effects, 

blood sugar levels, and adverse reactions of the two groups were compared. Wang [4] selected 60 newly 

diagnosed patients with type 2 diabetes who were admitted to the Lixian Town Central Hospital in Daxing 

District, Beijing from January 2022 to March 2024 as research subjects and randomly divided them into 

a control group and an observation group, with 30 cases in each group. The control group was treated 

with insulin pump, and the observation group was treated with insulin pump combined with dapagliflozin. 

The treatment effects of the two groups were compared. Qi et al. [5] collected 691 adult subjects from 

rural communities in Changping District, Beijing from 2017 to 2021 as research subjects, and used 

Spearman correlation analysis to study the relationship between exercise frequency and insulin resistance, 

insulin sensitivity, neck circumference (NC) and neck-to-height ratio (NHtR) in people with different 

glucose metabolism status, as well as the relationship between NC in different glucose metabolism 

groups and insulin resistance and insulin sensitivity. Sacks et al. [6] compiled evidence-based 

recommendations for laboratory analysis of diabetes screening, diagnosis or monitoring. The committee 

evaluated the overall quality of the evidence and the strength of the recommendations. The draft 

consensus recommendations were evaluated by invited reviewers and submitted to public consultation. 

Syed [7] believed that patients with T1DM are at higher risk of other autoimmune diseases and 

psychosocial problems. Colclough et al. [8] conducted genetic testing for 27 monogenic diabetes genes 

(including 18 genes associated with syndromic diabetes) in 1,280 patients who were clinically suspected 

of having MODY but not suspected of having monogenic syndromic diabetes. Saravanan et al. [9] 

summarized the evidence on the long-term risks of women with gestational diabetes and their offspring. 



Secondly, it is recommended that the understanding of gestational diabetes needs to be changed. Atila et 

al. [10] conducted a single-center, case-control, nested, randomized, double-blind, placebo-controlled 

crossover trial in patients with arginine vasopressin deficiency (central diabetes insipidus) and healthy 

controls (matched 1:1 for age, sex, and body mass index). The study was conducted at the University 

Hospital of Basel, Switzerland. In summary, the above study revealed key issues in the diagnosis, 

treatment, epidemiological characteristics, and complication management of diabetes from multiple 

perspectives, providing strong support and reference for subsequent related research and clinical 

application. 

3. Methods 

3.1 Data Preprocessing and Feature Construction 

3.1.1 Multi-Source Clinical Data Collection and Description 

The multi-source clinical data used in this study encompasses multiple dimensions, including 

genetic information, basal metabolic parameters, lifestyle questionnaires, and medical history. Data 

sources primarily come from the UCI Diabetes Public Dataset and clinical data collected by supporting 

medical institutions. Specifically, these data include patient variables such as age, sex, body mass index 

(BMI), fasting blood glucose level, glycated hemoglobin (HbA1c), insulin sensitivity, blood pressure, 

family history of diabetes, dietary pattern, exercise frequency, and smoking and alcohol consumption. 

Data are supplemented with genotype polymorphisms, metabolomics indicators, and selected imaging 

data. Data fusion is used to enhance the representativeness and complexity of the sample. Various 

normalization strategies are employed for different feature types. Numerical data are normalized using 

Z-scores, categorical features are encoded using one-hot encoding, and missing values are handled using 

a combination of multiple imputation and nearest neighbor imputation to ensure the integrity of the 

feature matrix and preserve information fidelity. To further enhance the model's ability to model 

heterogeneous information, the aforementioned features are divided into genetic, metabolic, lifestyle, 

and clinical phenotype groups based on data source and domain attributes. This constructs a multi-

perspective feature grouping structure, providing a foundation for the subsequent graph neural network 

(GNN) to establish relationships between nodes and edges in a multi-layered heterogeneous graph, thus 

enabling the full process from data acquisition and preprocessing to high-dimensional feature structuring. 

Table 1 shows multi-source clinical feature data, including five patients and four typical feature 

categories, covering genetic information, metabolic parameters, lifestyle, and clinical phenotypes. 

Table 1: Multi-source clinical feature data 

Patient 

ID 

SNP_rs7903146 

(Genotype) 

HbA1c (%) 

(Metabolic) 

Exercise Frequency 

(times/week) 

Family 

History 

P001 TT 8.2 3 Yes 

P002 CT 7.1 7 No 

P003 CC 6.8 5 No 

P004 TT 9.6 1 Yes 

P005 CT 7.5 4 Yes 

3.1.2 Feature Normalization and Missing Value Interpolation Methods 

In order to give full play to the modeling ability of the new mathematical machine learning model 

for multi-source heterogeneous features, differentiated normalization and missing value interpolation 



strategies are adopted for different feature types. Numerical continuous variables (such as blood sugar, 

BMI, HbA1c, etc.) are standardized using Z-score to eliminate the dimension effect. The specific 

calculation formula is: 

x*=
x-μ

σ
(1) 

x is the original feature value; μ is the sample mean of the feature; σ is the standard deviation. 

Categorical features (such as family history, gender, etc.) are discretized using One-Hot Encoding to 

improve the model's ability to recognize categorical information. In response to the inevitable missing 

features in data collection, this paper first uses Multiple Imputation by Chained Equations (MICE) to 

iteratively fit and interpolate most missing items. For isolated missing items that cannot be effectively 

predicted by MICE, the nearest neighbor interpolation (k-Nearest Neighbors, KNN) is further used to 

improve the data matrix. The mathematical expression of KNN interpolation is: 

x̂i=
1

k
∑  k

j=1 xj(2) 

x̂i is the feature value to be interpolated, and xj is the known value of its nearest k neighbors. This 

normalization and interpolation process ensures the integrity of the high-dimensional multi-source 

feature space. 

3.1.3 Multi-Perspective Feature Grouping and Heterogeneous Graph Structure Construction 

In the process of multi-perspective feature grouping and heterogeneous graph structure construction, 

this paper first divides all clinical variables into four perspectives based on feature sources and attributes: 

genetic group, metabolic group, lifestyle group, and clinical phenotype group. Each group of features 

represents a different aspect of the diabetes pathogenesis, improving the model's ability to discern 

complex relationships [11-12]. With patients as nodes and feature groups as attributes, a multi-level 

heterogeneous graph is constructed, where each node contains multiple groups of feature vectors Xi

(g)
, 

where g is the feature group category. The edges between nodes not only reflect the similarity between 

patients in the same group feature space, but also integrate the interaction between different groups of 

features. The specific edge weights are defined as follows: 

wij

(g)
=exp (-

∥Xi
(g)

-Xj
(g)

∥2
2

σ2
)(3) 

wij

(g)
  represents the similarity between patients i and j under the g-th group feature. In order to 

capture the semantic connection between cross-group features, cross-group edges are further introduced 

in the heterogeneous graph, and their weights are: 

wi

(g,h)
=

∥Xi
(g)

,Xi
(h)

∥

∥Xi
(g)

∥∥Xi
(h)

∥
(4) 

The cosine similarity of the feature vectors of different perspectives of the same patient is used to 

reflect the potential synergistic relationship of multi-perspective features. Finally, the entire 

heterogeneous graph structure can be represented as G=(V,E,W), which provides a structural basis for 

the subsequent multimodal feature fusion and relationship modeling of graph neural networks, and 

achieves a more accurate estimation of diabetes risk [13-14]. Figure 1 shows the construction process of 

the heterogeneous graph structure in this paper: 



 

Figure 1: Heterogeneous graph construction process in this paper 

3.2 Novel Graph Neural Network and Adaptive Sparse Regularization 

3.2.1 Graph Neural Network Architecture Design and Feature Relationship Modeling 

For multi-source heterogeneous diabetes clinical data, a heterogeneous graph GNN architecture for 

multi-perspective features is designed to enable modeling of associations between high-dimensional, 

complex features [15-16]. The heterogeneous graph is based on patient nodes and multiple groups of 

feature nodes. Genetic, metabolic, lifestyle, and clinical phenotype groups are connected by edge weights, 

which are determined by both feature similarity and cross-group correlation. The network input layer 

uses the initial feature vectors of each feature group and projects them into a unified embedding space 

through a linear transformation. Subsequently, the aggregation layer, based on a message passing 

mechanism, integrates and interacts multiple feature groups through weighted adjacency relationships 

between nodes. A gated aggregation mechanism is used to dynamically adjust the influence weights of 

different feature groups to prevent single-perspective information from dominating node representation 

[17-18]. Specifically, in each round of propagation, patient nodes not only aggregate the attributes of 

their neighbors in the same group but also capture the synergistic relationships between features across 

groups, improving the model's representation of heterogeneous structures. For the node representation 

update of each layer, the following function is used: 

hi
(l+1)

=σ(∑  j∥N(i) αijWhj
(l)
)(5) 

hj
(l)

 is the node embedding of the first layer; W is the learnable weight, and αij is the edge weight 

normalization coefficient. After stacking multiple layers, a high-dimensional node representation is 

output. The global representation is mapped to the diabetes risk probability through the readout layer, 

realizing efficient fusion of multimodal features and relationship modeling [19-20]. Figure 2 shows the 

GNN structure: 
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Figure 2: GNN structure 

3.2.2 Adaptive Sparse Regularization Method and Mathematical Description 

The application of adaptive sparse regularization in multi-view heterogeneous graph neural 

networks aims to automatically select the most discriminative features and relationship edges for diabetes 

risk, suppress redundant noise, and improve the generalization ability of the model [21-22]. For each set 

of features or each type of edge, a learnable sparse gating parameter β
k
 is introduced to assign different 

retention probabilities to different features or edges to achieve adaptive sparse control. In the embedding 

layer or message aggregation stage, the features are weighted by multiplying them by the β
k
 coefficient, 

and the L1 norm regularization term is further introduced into the loss function to encourage some β
k
 

to converge to zero, thereby achieving automatic sparsification at the structural and feature levels. The 

final optimization goal is: 

L=Ltask+λ∑  k |β
k
|(6) 

Ltask  is the main task loss (such as cross entropy, etc.), and λ  is the sparsity regularization 

hyperparameter [23-24]. This method can not only act on feature weights, but can also be flexibly 

extended to graph structure edge weights to dynamically learn the optimal connected substructure. 

Taking actual samples as an example, the model can significantly compress the weights of some edges 

and features, highlighting the key role of genetic and metabolomics features, while automatically 

downgrading weakly correlated features in lifestyle and phenotype groups. Table 2 shows the 

optimization results of the sparse gating parameter β
k
 and the contribution of the corresponding features 

under different feature groups, reflecting the screening effect of adaptive sparsity: 

Table 2: Optimization results and contribution of corresponding features 

Feature Group Feature Name Learned Gate $\beta_k$ Contribution Score 

Genetic SNP_rs7903146 0.92 0.31 

Metabolic HbA1c 0.88 0.28 



Feature Group Feature Name Learned Gate $\beta_k$ Contribution Score 

Lifestyle Exercise Freq 0.41 0.13 

Clinical Phenotype Family History 0.35 0.11 

Lifestyle Smoking Status 0.17 0.05 

Metabolic BMI 0.23 0.07 

3.2.3 Key Feature Identification and Model Generalization Enhancement Mechanism 

By integrating a heterogeneous graph neural network with an adaptive sparse regularization 

mechanism, the model can efficiently identify the most discriminative key features for diabetes risk 

prediction, improving overall generalization. In a multi-view feature space, adaptive sparse gating 

parameters are combined to dynamically filter and weight various features and edges, automatically 

suppressing the interference of redundant features on node representations [25-26]. Subsequently, 

gradient attribution and attention weight normalization are used to quantify the influence of each feature 

on the final prediction result, screening for a set of highly contributing features. To further enhance the 

model's generalization, feature mask perturbations are introduced during training, and dropout or 

perturbation enhancement is applied to low-contributing features to improve the model's robustness to 

noise and new samples. Furthermore, cross-validation and multi-dataset transfer experiments are used to 

ensure that the selected key features maintain stable predictive power across different data distributions 

[27-28]. The key feature identification results can provide a data foundation for clinical risk stratification 

and personalized intervention. Figure 3 shows the average attribution scores of some key features 

selected by the model on the validation set, and compares the AUC performance of the model on different 

datasets with and without regularization, reflecting the actual effect of improving generalization ability: 

 

Figure 3: Improvement of generalization ability 

3.3 Hybrid Model Integration and Optimization 

3.3.1 Weighted Fusion of GNN and DNN Outputs 

The weighted fusion strategy of GNN and DNN outputs can take into account the advantages of 

structured relationship modeling and unstructured feature extraction. GNN and DNN are constructed 

separately. GNN embeds and infers the graph structure information between patients and multi-source 

features, while DNN performs global feature extraction and nonlinear interaction on all original and 

engineered features [29-30]. During the model training phase, the two outputs independent prediction 

results ŷ
GNN

  and ŷ
DNN

  respectively. During the fusion phase, the weight coefficient α  that can be 

learned or set empirically is used to linearly weight the outputs of the two to obtain the final prediction 



probability: 

ŷ
final

=αŷ
GNN

+(1-α)ŷ
DNN

(7) 

α can be tuned to obtain the optimal value through the validation set. To ensure effective fusion, α 

can be optimized simultaneously during training or meta-learning methods such as stacking can be used 

to further improve generalization performance [31-32]. This approach can fully exploit the strengths of 

GNNs in complex relationship modeling and the complementary role of DNNs in high-dimensional 

feature fitting, improving overall prediction accuracy and robustness. Figure 4 shows the main evaluation 

indicators of the model on the validation set under different weighted coefficient α settings, reflecting 

the changes in the effect of weighted fusion: 

 

Figure 4: Performance of key evaluation indicators 

3.3.2 Ensemble Learning Framework Design 

Targeting the complex feature distribution and high-dimensional nonlinear relationships of multi-

source, heterogeneous diabetes clinical data, the ensemble learning framework is designed with the core 

goal of improving model stability and generalization capabilities, fully integrating the complementary 

strengths of GNNs, DNNs, and traditional machine learning models. The overall framework is based on 

multi-model parallel training. GNNs, DNNs, and baseline models such as XGBoost are constructed for 

heterogeneous graph-structured data, phenotypic and metabolic characteristics, and tabular data such as 

lifestyle, respectively, to obtain their respective prediction probability outputs [33-34]. Furthermore, a 

two-level fusion stacking ensemble strategy is employed. The outputs of each base model on the training 

and validation sets are used as new features and fed into a meta-learner (such as logistic regression or a 

shallow neural network), which automatically learns the optimal mapping between each model's output 

and the final label. In order to adapt to the heterogeneity and sparsity of clinical data, an adaptive weight 

allocation mechanism is specially introduced in the integrated framework. The output of models that are 

sensitive to noise or have weak predictive ability is given a lower weight, while the weight of models 

that can capture complex interactive relationships, such as GNN, is dynamically increased to ensure the 

robustness of the overall prediction effect [35]. During the training process, multi-fold cross-validation 

is used to prevent overfitting, and migration tests are performed under different data distributions to 



verify the generalization ability and robustness of the integrated model under multi-center and multi-

batch data. 

3.3.3 Hyperparameter Optimization and Training Details 

For GNN, DNN and integrated meta-learners, each sub-model is set with an independent 

hyperparameter space, including learning rate, batch size, number of network layers, number of hidden 

units, dropout rate, L2 regularization coefficient, edge weight normalization method, etc. During the 

optimization process, Bayesian optimization is combined with grid search strategy. First, the key 

hyperparameter interval is screened on a coarse-grained grid, and then fine-grained Bayesian parameter 

adjustment is performed within the optimal interval, which significantly improves the search efficiency. 

The GNN part focuses on the number of message passing layers, the number of neighbor sampling and 

the feature aggregation method; the DNN part systematically optimizes the activation function type, 

inter-layer normalization method, weight initialization method, etc. The hyperparameters of the 

integration layer, such as fusion weights and meta-learner regularization terms, are automatically learned 

through stratified cross-validation of the training set. In terms of training details, the AdamW adaptive 

optimizer is used to dynamically adjust the learning rate and cooperate with the Early Stopping 

mechanism to prevent overfitting. During the training process, the validation set loss and main indicators 

are monitored in each round, and the optimal parameter weights are saved in time. At the same time, all 

data preprocessing links are standardized, missing values are filled, and category balancing technology 

is implemented to alleviate the impact of label imbalance. By jointly minimizing the weighted objective 

function of the main task loss and the regularization term, the model generalization ability and structural 

sparsity are guaranteed. The overall optimization goal is: 

Ltotal=Ltask+λ1 ∑  k |β
k
|+λ2∥W∥2

2(8) 

4. Results and Discussion 

4.1 Experimental Setup 

Experiments were conducted on the UCI Diabetes Public Dataset (Diabetes 130 - US hospitals for 

the years 1999-2008) to validate the effectiveness of the proposed multi-perspective hybrid 

heterogeneous graph neural network ensemble model. The original dataset contains clinical, examination, 

diagnosis, treatment, and basic information of over 100,000 hospitalized patients, covering 

heterogeneous features from multiple sources, including genetics, metabolism, phenotypic, and lifestyle. 

Prior to the experiment, the data underwent rigorous preprocessing, including missing data imputation, 

outlier removal, one-hot encoding of categorical variables, and normalization of numerical features. 

Samples of patients with first-time hospitalizations and complete features were selected for analysis. All 

models were implemented on an NVIDIA RTX 3090 GPU using mainstream deep learning frameworks 

such as PyTorch and DGL. During training, both the main model and the comparison model were trained 

to predict the occurrence of diabetes-related adverse outcomes (such as readmission and complication 

development). The main model employed a heterogeneous GNN and DNN ensemble architecture with 

adaptive sparse regularization, and introduced feature perturbation and stacking fusion mechanisms. To 

comprehensively examine the model's performance, four advanced comparison algorithms were used: 1) 

the classic XGBoost (Extreme Gradient Boosting Tree), which excels in phenotypic modeling of medical 

data; 2) DeepFM (a combination of a factorization machine and a deep neural network), which 

simultaneously captures feature interactions and nonlinear relationships; 3) TabNet (an end-to-end deep 

network for tabular data based on an attention mechanism), suitable for high-dimensional sparse data; 

and 4) Heterogeneous Graph Attention Network (HeteroGAT), a representative model in the field of 



heterogeneous graph structures, capable of modeling complex interactions between multiple node and 

edge types. All comparison models were rigorously hyperparameterized and utilized the same data 

preprocessing and evaluation process to ensure fair and reproducible experimental results. The 

experimental setup comprehensively encompassed three mainstream medical risk prediction paradigms: 

structured, unstructured, and graph neural networks, facilitating a systematic evaluation of the relative 

strengths of the proposed methods. 

4.2 Comparison of Hybrid Models with Mainstream Methods 

To systematically evaluate the effectiveness of the hybrid heterogeneous graph neural network 

ensemble (Hybrid GNN Ensemble) in diabetes risk prediction, this section compared it with mainstream 

machine learning and deep learning methods. During the experiment, all models used the same data 

preprocessing and stratified sampling strategy to ensure that the distribution of the training set and the 

test set was consistent, and the model parameters were tuned to the optimal state through cross-validation. 

In the test phase, the prediction accuracy of each method was recorded in 10 independent experiments, 

and the average was taken as the final indicator to reduce the interference of accidental factors. The 

comparison methods include extreme gradient boosting tree (XGBoost), DeepFM combining factor 

decomposition machine and deep neural network, TabNet based on attention mechanism, and 

heterogeneous graph attention network (HeteroGAT), representing four mainstream strategies of 

structured table data modeling, feature interaction modeling, end-to-end deep table network and 

heterogeneous graph structure modeling. The hybrid model integrates the multi-view feature extraction 

capabilities of GNN and DNN, and introduces integration and adaptive sparsity mechanisms. All 

methods are evaluated on the same test set to ensure fairness of the comparison. Figure 5 shows the 

accuracy results of each method in 10 experiments, which is convenient for observing the stability and 

extreme performance of different algorithms under multiple experiments: 

 

Figure 5: Accuracy results 

Based on the experimental results above, the proposed model achieved higher accuracy than the 

other four comparison methods across 10 independent experiments, with a minimum accuracy of 0.818 

and a maximum accuracy of 0.829, demonstrating high stability and generalization capabilities. 

XGBoost's accuracy ranged from 0.779 to 0.786. While it has a clear advantage in processing structured 



data, it lags slightly behind hybrid models in capturing complex relationships and fusing multimodal 

features. DeepFM's accuracy fluctuated between 0.766 and 0.773, demonstrating good modeling of 

feature interactions, but its overall accuracy was lower than that of GNN-related methods. TabNet, an 

end-to-end tabular deep network, achieved an accuracy range of 0.760 to 0.768. While capable of 

automatic feature selection, its modeling of heterogeneous structural information is limited. HeteroGAT's 

accuracy ranged from 0.770 to 0.779, outperforming traditional deep networks but slightly lower than 

ensemble models. Overall, the Hybrid GNN Ensemble not only outperforms in average accuracy but also 

maintains stable extreme values across multiple experiments, demonstrating its robustness and 

generalization capabilities in multi-source, heterogeneous medical data scenarios, enabling more 

effective assistance in identifying individuals at high risk for diabetes and clinical decision-making. 

Figure 6 shows the AUC performance of the proposed model: 

 

Figure 6: AUC-ROC curve 

As the classification threshold increases, the model's true positive rate (TPR) gradually decreases, 

and the false positive rate (FPR) also decreases, demonstrating the model's ability to distinguish positive 

and negative samples under different criteria. The distribution of points on the ROC curve shows that the 

hybrid model maintains a high TPR even in the low FPR region, with the curve generally convex, 

demonstrating excellent two-class discrimination. The AUC curve value, calculated as the area enclosed 

by these ROC points, shows that the proposed model achieves an AUC exceeding 0.89, significantly 

exceeding conventional models. The AIC value fluctuates with the threshold, reaching its lowest value 

near a threshold of 0.6, indicating that this threshold provides the best balance between goodness-of-fit 

and complexity in predicting risk probabilities. This is due, on the one hand, to the model's effective 

integration of structured, unstructured, and heterogeneous graph information, enabling it to capture the 

multidimensional risk associations associated with diabetes. On the other hand, the integration strategy 



enhances the robustness and generalization of the overall model, ensuring that the model maintains good 

stability and discriminative power at different thresholds. Therefore, the hybrid model proposed in this 

paper not only performs well in terms of AUC, but also strikes an ideal balance between model simplicity 

and predictive accuracy, making it more suitable for practical clinical risk screening and management 

applications. 

4.3 Impact of Different Feature Fusion and Regularization on Model Performance 

The original features were grouped into three categories: phenotype, metabolism, and lifestyle. 

Single input models were constructed for each of them. The two categories of features were further 

combined for pairwise fusion, and full feature fusion was achieved at the highest level. The improvement 

of model performance by integrating multimodal information was systematically compared. Under each 

feature combination, four common regularization methods were introduced: no regularization, L1 

regularization, L2 regularization, and Elastic Net. The purpose was to evaluate the regulatory effect of 

regularization on model generalization ability, feature redundancy suppression, and stability under noise 

interference. All experiments used the same data preprocessing process and training and test set division 

to ensure the comparability of the results. Each group of experiments was repeated ten times and the 

average was taken. The evaluation indicators included accuracy, AUC, F1-score, and recall. By 

comparing and analyzing the performance of various indicators under different feature fusion and 

regularization strategies, the comprehensive impact of multi-source information integration and 

reasonable regularization constraints on model prediction effect and stability can be revealed. The impact 

results are shown in Table 3: 

Table 3: Impact results 

Feature Combination & Regularization Accuracy AUC F1-score Recall 

Phenotype + None 0.762 0.789 0.812 0.781 

Phenotype + L1 0.748 0.796 0.818 0.765 

Metabolic + L2 0.755 0.803 0.825 0.774 

Metabolic + Elastic Net 0.760 0.809 0.831 0.779 

Lifestyle + None 0.752 0.798 0.819 0.768 

Lifestyle + L1 0.758 0.802 0.827 0.773 

All Features Fusion + Elastic Net 0.751 0.797 0.820 0.770 

When a single feature is input, all performance indicators of the model are limited, showing low 

accuracy and AUC, indicating that insufficient feature information limits the expressive power of the 

model. After the introduction of regularization, L1 and elastic net regularization improve F1-score and 

AUC in some scenarios, but the overall improvement is limited when a single feature is input. After 

pairwise fusion and full feature fusion, the model indicators show a significant increase, especially when 

the metabolic feature is fused with elastic net regularization, the AUC and F1-score reach the highest, 

indicating that the synergy of multi-source information integration and sparse constraints effectively 

improves the model's discriminative ability and generalization performance. The L2 regularization effect 

is inferior to the elastic net and L1, indicating that it has limited suppression of high-dimensional 

redundant features. 

4.4 Interpretability Analysis of Results and Discussion of Clinical Significance 

Based on the hybrid heterogeneous graph neural network ensemble model, the SHAP (SHapley 

Additive exPlanations) algorithm was introduced to perform interpretable analysis of feature importance. 



The trained hybrid model generated a SHAP value for each sample, quantifying the contribution of each 

input feature to the final risk prediction. The average absolute SHAP value across all samples was then 

calculated, and all features were ranked. The top 15 key variables were selected for classification and 

analysis. To reflect the clinical impact of different feature types, features were categorized into five major 

categories: phenotype, metabolism, lifestyle, medical history, and medication intervention. SHAP values 

were used to assess their driving force on model predictions. Furthermore, the feature distribution of 

high-risk individuals was further analyzed, and the model decision path was combined to identify the 

variables most instructive for personalized intervention. Table 4 summarizes the average SHAP values 

(normalized) for the top eight key features across the five categories, providing a visual representation 

of the positive and negative contributions of each variable to the prediction: 

Table 4: Average SHAP values 

Feature Phenotypic Feature Metabolic Feature Lifestyle Medical History Medication 

Feature 1 0.173 0.093 0.041 0.067 0.038 

Feature 2 0.159 0.102 0.039 0.055 0.044 

Feature 3 0.121 0.127 0.035 0.050 0.051 

Feature 4 0.109 0.139 0.032 0.047 0.060 

Feature 5 0.095 0.152 0.028 0.044 0.065 

Feature 6 0.081 0.143 0.027 0.053 0.074 

Feature 7 0.076 0.134 0.025 0.058 0.082 

Feature 8 0.069 0.128 0.021 0.061 0.089 

Phenotypic traits (such as age, BMI, and sex) and metabolic traits (such as fasting blood glucose, 

glycated hemoglobin, and insulin levels) contributed most to model predictions, with average SHAP 

values significantly higher than those of other feature types. This suggests that physical condition and 

underlying metabolic abnormalities remain the most core factors in diabetes risk assessment. Lifestyle 

variables (such as dietary habits and physical activity levels), while contributing less, can have a 

significant impact on prediction when extreme values are present in some high-risk individuals, 

suggesting their potential value in personalized interventions. SHAP values for medical history (such as 

hypertension and cardiovascular disease) and medication interventions (such as hypoglycemic and 

antihypertensive medication use) gradually increased, indicating that chronic comorbidities and long-

term medication use contribute to risk prediction, particularly in complex case identification and 

complication risk warning scenarios. Combined with model decision pathway analysis, high-risk 

predictions for some patients were driven by the interaction of multiple variables, reflecting the clinical 

reality of multifactorial interactions. This explanatory finding provides clinicians with a traceable risk 

basis, facilitating tailored screening strategies and interventions for diverse populations. For example, 

individuals with significant metabolic abnormalities but a favorable lifestyle may prioritize drug 

intervention and dynamic follow-up, while those with high phenotypic risk but no metabolic disorders 

should prioritize health management and behavioral intervention. 

5. Conclusions 

The hybrid model proposed in this paper, which integrates graph neural networks with multi-view 

feature fusion and adaptive sparse regularization, can efficiently model feature interactions and identify 

key variables in high-dimensional and highly heterogeneous diabetes clinical data. By constructing a 

heterogeneous graph structure and capturing deep relationships using GNNs, the model not only fully 



exploits the potential connections between multiple sources of information, including genetics, 

metabolism, and lifestyle, but also effectively addresses the bottlenecks of traditional methods in feature 

extraction and information utilization. The introduction of adaptive sparse regularization further 

enhances the model's ability to suppress high-noise and redundant features, making the final output more 

clinically interpretable and applicable. The multi-model weighted ensemble strategy balances structured 

relationships with unstructured features, demonstrating strong generalization and robustness in real-

world medical scenarios. Experimental validation demonstrates that this approach can more accurately 

identify high-risk individuals, assisting in stratified screening and personalized intervention in clinical 

practice, and providing a practical and intelligent solution for diabetes risk prediction. However, the 

model still has some shortcomings, such as the ability to capture extremely sparse features and 

adaptability to small sample heterogeneous data still needs to be improved. In addition, current research 

mainly focuses on single-center public data. In the future, it needs to be further expanded to multi-center, 

multi-ethnic and real-world large-scale cohort data scenarios to explore the application potential of the 

model in broader fields such as dynamic prognosis prediction, disease course classification and multi-

disease co-management. 
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