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Abstract

The aim of this work is to investigate the existence, uniqueness, and positivity of a solution to a
nonlinear Hadamard fractional differential equation supplemented with an integral boundary condition.
Our approach leverages several key theorems from nonlinear functional analysis: the Leray-Schauder
nonlinear alternative, the Banach contraction mapping principle, and the Guo-Krasnosel'skii fixed point
theorem on cone expansion and compression. Finally, we provide illustrative examples to demonstrate
the applicability of our theoretical findings.
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1. Introduction

The ability of fractional calculus to capture non-local effects, such as memory and
hereditary properties, makes it exceptionally well-suited for describing complex
phenomena in materials science, viscoelasticity, and anomalous transport. This has
driven intense interest in the analysis of fractional-order boundary value problems
(BVPs). A central challenge in this field is proving the existence and uniqueness of
solutions, especially for nonlinear equations where analytical solutions are often
unattainable. To address this, researchers frequently employ methods from nonlinear
functional analysis, with fixed point theorems (e.g., Banach, Schaefer, Krasnoselskii)
serving as a primary technique for proving existence results.


mailto:zenkoufi@yahoo.fr
mailto:boulareshamid@gmail.com

A significant portion of this work, detailed in [1,4,6,10,11,12,14,16,20] and their citations,
focuses specifically on ensuring the existence of positive solutions, which are physically
meaningful in many applications.

While the literature on this class of problems is predominantly based on the Riemann-
Liouville and Caputo definitions of fractional calculus, other formulations offer unique
advantages. A notable example is the Hadamard fractional derivative, which is
characterized by the inclusion of a logarithmic function of arbitrary exponent in its
kernel. This structure makes the Hadamard derivative a natural choice for modeling
phenomena exhibiting semi-infinite or logarithmic scaling, as it is invariant under
dilation scaling. Key references for the theory and application of Hadamard derivatives
include [2,3,7,9,13,17,18,19] .

In [12], authors studied the existence of at least three positive solutions to the following
singular boundary value problem:

°D; x(g)+ fe.x(6) x'(g))=0, 1<g<l.
x(g)=x"(¢)=0, X(1)= > X))
where 2<a<3 7,<0, 0<& <& <&, <& <..<1, (j=12..) and °D; is the standard

Caputo derivative.

Wengui Yang [18] applied the Leray-Schauder nonlinear alternative and Krasnosel'skii's fixed point
theorem to prove the existence of positive solutions for a class of coupled semipositone Hadamard
fractional differential equations with integral boundary conditions.

In [2] authors investigated the existence criteria for the following problem:
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fe,x(¢)) 1l<a<2, 1<¢<T.
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where " D“ denotes the Hadamard fractional derivative of order &, f : [LT]xR >R isa
continuous function, 1eR™, ¢;, j=12,..,m, are given points with 1<¢, <..<g, <T, and 3, are
appropriate real numbers.

Let E be the Banach space of continuous functions C[i,e], endowed with the norm |leol| = g\&)éﬂw(g].

Motivated by the work discussed above and others we investigate to the following nonlinear Hadamard
fractional differential equation with integral boundary condition:



{ a(s)+ f(s.@(c)=0, ge(ae)
o(a)=a'(a)=0, x(1)=nfa(s)dt,

where "DY is the Hadamard fractional derivative of fractional order q,
f eC([Le]xR,,R,), n>3, gen—1,n isareal number, and 0 < 77 < 2.

The organization of this paper is as follows. We begin in Section 2 with preliminary material, including
key definitions, lemmas, and a study of the Green's function properties. The section also outlines the
fixed point theorems employed in subsequent sections. Sections 3 and 4 are devoted to stating and
proving the main results on the existence, uniqueness, and positivity of solutions, achieved via the
Leray-Schauder nonlinear alternative, the Banach contraction principle, and the Guo-Krasnosel'skii

fixed point theorem. Concluding examples that illustrate the applicability of our theorems are given in
Section 5.

2. Preliminaries
We introduce some necessary definitions, lemmas and theorems which will be used in this paper.

Definition 1. [8] The fractional integral
1 f(S)
1% flg)= ds,
0 (g) F(a)J.O (g_s)lfa
where « >0, is called Riemann-Liouville fractional integral of order « of a function
f : (0,40)—>R and T() is the gamma function.

Definition 2. [8] The Riemann-Liouville fractional derivative of order o >0, of a continuous function
f : (0,400) >R is given by

05 161y ) Fe-or= r)es

Where T() is the gamma function, and n=[a]+1, with [«] denoting the greatest integer

less than or equal to «. It is assumed that the right-hand side is pointwise defined on
(0,4x) .

Definition 3. [8] The Hadamard fractional integral of order « >0, for a continuous function
f : [L+o) >R is given by

4 3o (c) = L) r(log ngF(s)%.

F(a 1 S

Definition 4. [8] Let >0 and [«] its integer part. The Hadamard fractional derivative of order o
of the function f : [L,+e0) —> R is defined as



e G
dt) T(h—a)™ s s
Where n=[a]+1.
Lemma5. [8] Assume that @ e C(0,1)~L*(0,1) with a frational derivative of order o >0 that
belongs to C(0,1)~ L*(0,1). Then

15Dy a(c)=a(c)+cc®  +c,c" % +...+C, ¢ ",
for some ¢, R, i=12,...,n; n=[a]+1.

Definition 6. [15] Let (E,||) be a Banach space and & : E — E. The operator A is a contraction
operator if there is an « € (0,1) such that @,ve E imply
[-2v< af@ v

Theorem 7. [15] (Banach) Let K be a nonempty closed convex subset of a Banach space E and
A : K — K be a contraction operator. Then there isa uniqgue xeK with Ax=x.

Theorem 8. [5] (Guo - Krasnosel skii) Let E be a Banach space, and let K — E, be a cone.
Assume €,,Q2, are open subsets of E with 0, Q, cQ,, and let

A: Km((Tz\Ql)% K,

be a completely continuous operator. In addition suppose either

(i) |ao|<|a|, @Koy, and |as|z|o]| @cKno,; or

(ii)“Aw” > “w”, @ e KnoQ,, and HAwH < "w”, weKnoQ,,

holds. Then A has a fixed point in K m((Tz\Ql)

Lemma 9. let y eC[Le} Then the Hadamard fractional boundary value problem

has a unique solution, given by

7(6)=[ Hics)y(s) %

Where,



G(g s) = 1 (IOQ g)q_l(l_ log S)q_l - ('09 %)q_l, 1<s<¢<e,
7 1(a) |(log ) (1-log s), l<c<s<e

and, A=1-7[(log¢)"dt >0

Proof . The solution of the Hadamard differential equation in (2.1) can be written as the equivalent

integral equation

of)=Clbac)" +C,lln '+ Culbg o)~ (loa £ o)

S

From the boundary condition @(1)=o'(1)=0 we get C, =C, =0. And,

O

1 S

From the boundary condition @(e)=17 [ @(c)dt, we deduce that

R L

(oo g €)™ )85 L [1g 6]y
&

s TI(q) s s
o(c)= nllog " [ ale)at s log o *A-log o) y(s)
+ﬁf{(leg ¢y (@1-logs)™ —(Iog %)q_ J y(s)%.

als)=nllog ) [ @(c)at+ [ 6le.s)y(s) =

Integrating this result with respect to ¢ from 1 to e, we obtain



[alc)at = [nllog)at [ alc)at+ [ [ 6e,s)y(s) S
[[o(e)dt=—01 1 [ % N

I [ ollog )t

Therefore,

ole) - L [ Tole o) ot [ ol

. f(e@,sn% fe<g,s>dt} oL
- J‘: H

Where G(g,s) is defined by (2.3). The proof is complete.
Now we give some properties of the Green function.

Lemma 10. [19] The function G(c,s) defined by (2.3) satisfies the following properties
(i) G(s,5)=0 and G(c,s)eC(Le]x[LelR,) .

(it)

k(e)k(c)<T(a)G(c.s)< (a-1)k(c) for g,s e [Le]

(iii)
k(e)k(e)=<T(@)G(s.5)<(a-1)k(), for ¢, s e [Le]

Where, k(g)=(log¢)**(L-log ¢) and k(¢)=(log c)1-log c)'™*, for q>2, ¢,sefle]
Combining Lemma 9 and Lemma 10, we obtain

1 log ) e .
@LK(GH W[ k(g)dtJ k(s)
<H(os)< 1(1(_3(“% fdt]ﬁ(g).

Lemma 11. The function G(¢,s) defined by (2.3) satisfies the following properties

(i) G(c,5)=0 and G(c,s)eC(Le]x[LelR,) .
(i) vi<s,g<e

(log 5)**Gle,s) =< Gls,5)< G(e, s).



Proof. The continuity of G is easily checked.
If 1<g<s<e, itiseasytoseethat G(c,s)>0, and

(log5)""G(e.s)=Gls,s)<G(e,s)
If 1<s<¢<e,wehave

r(@)6(e.5)- (og )1 by 9 o £j

q-1
(Iog 61— og >( %} (0g o)™,

> (log g)**(1-log s)* —(1-log s)**(log ¢ )** =0.
Then

Glg,s)>0.
And,

%{(log ) (t-logs)" - (|Og % Jq_l}
= (« —1){009 ) (L-log s) - (Iog % jq—z ]

>0,

which implies that G(g,s) is the monotone nondecreasing function, so
Glc,s)<Gl(e,s).

On the other hand,

G(s.s) _(logg)"™(L-logs)" - (log £
G(e,s)  (1-logs)™ —(1-logs)™

, (log ¢)**(1-log s)"* —(log ¢ - log c log s)""
(1-logs)™ —(1-logs)*™

= (log ¢)",

which implies

Glc,s)=(log ¢)"'G(e,s).
Finally

(log )" G(e,s)<G(c,s)<Gle,s), Vi<s,c<e.
The proof is complete.
We now note that @ is the solution of problem (1.1) if and only if @ is a fixed point of the operator



Tue)= [ H.s) 16.o()

1)« [ e 55 ol (ete)
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The operator T is continuous in view of continuity of G(g,s) and f(s,@(s)), V1<s,s<e. And by
means of the Arzela-Ascoli theorem, T : E — E, is completely continuous [10] .

3. Existence and Uniqueness results
In this section, we prove the uniqueness result via Banach contraction principle.
Theorem 12. Assume that there are L > 0 such that

|f(g.@)-flgv)< L@ v,
Vo,veR,, ge[l,e],
and if

C= Lf(G(e,s)+ MfG(e,s)dt]% <1, ¢,sele]

Then, the problem (1.1), has a unique solution in E
Proof. We will use the Banach contraction principle to prove that the operator T defined by (2.4)
has a fixed point. Now we will prove that T is a contraction. Let @,v € E, we get

| Tu(g) — Tv(g] <

f[e(g,s)“(s,w(s))_ £(s.v(s)) + 19 G (e, ) s, (o) - f(s,v(s))dtJﬁ

A S

So, we can obtain

<L oo 22" P sy Elo v,

By using

C= Lf[@(e,s)+MrG(e s)dtJE <1

S

Obviously, we have

[Tu=Tv]; <Clo—v..
so, the contraction principle ensures the uniqueness of a solution for the fractional boundary value



problem (1.1). This finishes the proof.
The existence results are based on the following Leray-Schauder nonlinear alternative.
Lemma 13. [8] Let F be Banach space and Q be a bounded open subset of F , 0eQ .

T : Q—>F be acompletely continuous operator. Then, either there exists xedQ , 1>1 such
that T(x)=Ax , or there exists a fixed point x* € Q
Theorem 14. Assume that there exist nonnegative functions k, h e L*[1, e] such that

|f(5,@) <k(s)l@|+h(s), s.@)e[Le]xR,
and

F={ (G(e, s)k(s)+ MfG(& S)k(S)dtJ% <4,

A

A

= {G(e, s)h(s)+ 109 e s)h(s)dtJ% <

Then the BVP (1.1) has at least one solution @* € E .
Proof. To prove this Theorem, we apply Lemma13. First, we need to prove that T is completely
continuous:

1) G(c,s) is continues and f(¢,a(c)) is continuous nonnegative function, we getthat T : E @E, s
continuous.
2) Let B ={we E : |o|. Sr} a bounded subset. we will prove that T(QNB,) is relatively

compact:
(i) Forsome @eQMB,, we have:

Tu(c) < f(e(g, )|t (s.(5)) + 19 6, )/ 5,0(s)) dtJ%.
From the above inequalities we have
ol <ol [ sfe ) 2109

. f(G(e, gmpM [et, s)h(s)dtJ ds
This shows that

[Tul, <Fle|, +G=Fm+G.
[Tu|, <F|a|, +G<Fr+G,

then, T(QN B, ) uniformly bounded.



(i) The continuity of G(g,s) implies that, for any & >0, there exists a constant § such that
Vg, elle] if |g,—¢,|<d, then [G(g,s)-Gls,,s)<e
We have:

|Tu(g1)—TU(g2) < f |(G(§1’ S)_ G(§27 S)) f (S’ ZU(S))
ilbs s (e0se | )06, s mto)o]

1-n jae |_(|09 gl)qil - (IOg G2 )qiljdt '
So,

|Tu(gl>—m<gzxsL[me(gl,s)—e(gz,sx

ds
s

77[('_09 6'1 |Og CJZ ] th
1—nI§l(|Og )" -(log g, )" dtI e 5)-Glez st

where, L =max

mex| (s, (s))

As ¢ —¢, the right-hand side of the above inequality tends to zero, [Tu(s;)-Tu(g,) — O,
1762

consequently T(Qm Br) is equicontinuous. From Arzela-Ascoli theorem, we deduce that T is a

completely continuous operator.
Now, we prove that there exists a point @ < E which satisfies Tu=a .

Consider Q = {zv eX : "w” < m}, with m=G(1-F)™,
im=Alo] =T,
We assume that @ € 0Q2, A >1 sush that Tu = Au, then

Tue) < E(G(e, o) (s.(s))+ 2008S [[Gle.s)|f(s.(s)) dtj%

A

We also have,

Tu(e) <o f[e(e,s)k(s)+M

A

¥ f(G(e,s)h(s)Jr—n(log o) ['Gles)nls )dt) &

This shows that

am =[Tu|, <F|o|_+G=Fm+G,

From this we get



st+9=F+——9—j=F+a—)=L

m G(L-F)
consequently A <1, this contradicts A>1. Byapplying Lemmal3, T has a fixed point @" € Q,
which is a solution of the Hadamard fractional boundary value broblem (1.1)

The proof is complete.

4. Positivity results
In this section, we discuss the existence of positive solution for the Hadamard fractional boundary
value problem (1.1). We make the following additional assumptions.

Q) f(s.@(s)=a()f,(@(s) where acC(Le]R.) and f,eC(R.,R.).

(Q2) 0<[(logs)™Gle,s)a(s)® <o, 0<[G(es)als)s <.

Definition 15. A function w(g) is called positive solution for the fractional boundary value problem
(1.1) if @(c)=0, Vcel0,1] and satisfies, the BVP (1.1)

Lemma 16. Let @ <E, the unique solution @ of the fractional boundary value problem (1.1) IS

nonnegative and satisfies
nEin ]w(g) > (Iog r)q_1||w||E,

gelr,e

Proof. Let @ € E, it is obvious that @(c) is nonnegative, ¢ [a,e] From Lemmall, we have

ol 001260050261 [t o) |

A

and,

a(c)> [ (log )" *G(e.s)a(s) f,(a(s))
+MJ (log ¢)"Gle,s)a(s) fy(a(s ())olt]‘iS

A
> (Iog g)‘H”w”E.

Hence, for all ¢ €[r,e], we obtain
grlm]w(g) > (log 7)" || ..

The proof is complete.
Definition 17. We define the cone K by

K=<t olc)20, min (w(c))= (og ], |

K is a non-empty closed and convex subset of E.
We define an operator T : K — K, as follows:



Tu(s)= [ Hic.8)a® 1 (@(s) -

) - [ e 208 [l ) &

_ f(e(g,s)a(g) f,((s) +77(|0ng)“‘1 [6(s.s)a(e) fl(w(s))dtJ%_

The operator T is continuous in view of continuity of G(c,s), a(¢) and f,(@(c)). And by means of
the Arzela-Ascoli theorem, T is completely continuous.
By Lemmall, we have

[Tu] < J.:(G(e’ s)a(s) f,(a(s))+ MLSG(& s)a(s) fl(w(s))dt]%,

and,
Tu(e)= ["((log o) Gles)a(s) f,(w(s))
+ Mf (log ¢ )" G(e,s)a(s) fl(w(s))dtj%,
> (log ¢ )**[[Tul.

Therefore, T(K)c K
Lemma 18. [10] The operator defined in (4.1) is completely continuous and satisfies T(K)g K.

To establish the existence of positive solutions for problem (1.1), we will employ the Guo-

Krasnosel'skii fixed point theorem.
The main result of this section is the following:

Theorem 19. Let (Q,) and (Q,) hold, 0 < Bn** <1 and assume that

f, = lim

Then the problem (1.1) has at least one positive solution in the case

(i) f,=0 and f =oo (superlirear) or

(i) f,=00 and f_ =0 (sublinear )

Proof. We will prove that the problem BV.P (1.1) has at least one positive solution in both cases,
superlinear and sublinear. For this we use Theorem 8. We prove the superlinear case.

Since f, =0, thenforany &>0, 35,>0, suchthat f,(@)<&a| for |m|<s, . Let Q, be an open
set in E defined by

Q = {y e E/"y”E < 51},



then, for any @ e KnoQ,, ityields

= [ cles)aa {ate) 428 [efe o oo |,

wlog 6)" = ds
[Tul. < éll@]. J.( e,s)a(s) + 1 LG(e, s)a(s)dt S

If we choose ¢ = [Jf (G(e, s)a(s) + 402 e (e, s)a(s)dt)%r, then it yields

[Tul, <[], VoeKnoQ,.

Now from f, =co, then ¥YM >0, 3H >0, suchthat f,(@)>M(a|) for |@|>H . Let
H, = max{2§1, (log 7)"*H }

Denote by Q, the open set

Q, =y <E/|y], <H.}
Forany @ e KnoQ,, we have

min @(s)> (og "],

=(log 7)™ H, > H,
let w e KnoQ, then

1) [ (b 1o 1o (ot6)+ 2B g el o (e .

Tulc)= M f[aog o) afe s)a(s)+ 19V g g>qle<e,s>a<s>dt}%nwny

and choosing M = [jl(log c)"'G(e,s)a(s) + 2129 (*(log ¢ ) Ge, s)a(s)dt)ds} we get
||Tu||E Z”w”E,‘v’w e KMoQ,.
By the first part of Theorem8 , T has at least one fixed point in Km(ﬁz?Ql), such that;

H suaf” <H,. This completes the superlinear case of Theorem 19 . Case Il Now, we assume that

f,=c0 and f_=0 (sublinear case) , Proceding as above and by the second part of Theorem 8, we
prove the sublinear case. This achieves the proof of Theoremi9.

5. Examples
In order to illustrate our result, we give the following examples:
Example 20. Consider the following fractional boundary value problem



N—"

{H DgZD'(g +W§W=O’ ge(l,e),
ol)=a'1)=0, x(1)=3[a(c)dt,

f(g,w(g)): 2(5+w(g):;exp(g+3)’ Vo eR, ce [1,e].

One can choose
1
kig)=—F"—, lej
€)= o3y <l
k e L([1,e] R* ) are nonnegative functions, where

(e, o(c))- fev(e)] < — @(s)-v(s)

~ 2exp(s +3)[(5+@(s))(5+v(s))
1

S m@@‘%d
<k(¢)a(s)-vis)

and,

C= Lf[G(e,s)+ g(I%g)q_lfG(e,S)dt}% <1.

Hence, by Theorem 12 , the Hadamard fractional boundary value problem (Jl) has a unique

solution in E.
Example 21. Consider the following fractional boundary value problem

{” Dia(s)+(1+6%)a(c)+exp(-¢)=0, ce(ae)
@(a)=a'(a)=0, x(1)=3[a(s)dt,

set i ;

q= 5 n= 5

Where,

f (s @())=als)sin a +exp(-¢).
k,l e ([1L,e] R*) are nonnegative functions, where

g, a(c)) < 0+6%)m(c)+ ex;l) p

<k(g)lals)+1()

, Vo eR, ge[l,e],

and



F= f[G(e,s)k(s)+ Mfe(e, s)k(s)dtj% <1,

G- f[G(e,s)h(S)JrM fe(e,s)h(s)dt]% i

Hence,

A S

by Theorem14 , the Hadamard fractional boundary value problem (J 2) has at least one

solution in E.
Example 22. Consider the following fractional boundary value problem

{H D%w(g)+ @’(¢c)ng=0, ce(ae),
al)=a'1)=0, x(1)=3[a(s)dt,

where,

and

f(s.a(s))=a*(c)n ¢ =alc) f,(@(c))

alg)=

f, = lim

750 | ol ||

Ih¢eC(LelR,) f,(@)eC(R,,R,) Then
@) o, and 1, = im @),

By Theorem 19 (|) the fractional boundary value problem (J 3) has at least one positive solution.
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