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Abstract 

Selecting appropriate defect-detection technologies is a critical challenge in the transition toward 

Quality 4.0, particularly in developing industrial contexts. This study proposes an Inspection 

Technology-Readiness Mapping (ITRM) framework integrating Multi-Criteria Decision-Making 

(MCDM) to support structured and context-aware selection of inspection methods. Based on a survey 

of fifty Algerian manufacturing firms, companies are classified into three readiness levels: 

Foundational, Developing, and Advanced. The framework quantitatively links each level to 

compatible classes of defect-detection technologies while explicitly incorporating metrological 

reliability as a decision criterion. The proposed approach delivers a hybrid and actionable roadmap 

that connects global technological options with local industrial capabilities. Results highlight both 

emerging Industry 4.0 adoption and persistent challenges related to data, skills, and infrastructure, 

confirming the practical value of the ITRM for managers and policymakers. 

Keywords: Quality control; Industry 4.0; Quality 4.0; Survey; Empirical study; Inspection System; 

Artificial Intelligence; Defect detection. 
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In the current context of globalized manufacturing, where competition is intense and customer 

expectations continue to rise, product quality plays a strategic role in enhancing productivity, 

optimizing the use of resources, and strengthening customer confidence. Manufacturing companies 

are therefore under continuous pressure to integrate quality as a core component of their operational 

and strategic decision-making processes. As production systems expand in scale and complexity, the 

ability to ensure consistent quality has become a fundamental requirement for survival, growth, and 

technological advancement in the industrial sector. (Chen et al., 2021) 

Recent advances in digital technologies have profoundly reshaped manufacturing systems, 

transforming how products are produced, monitored, and inspected. Modern production 

environments increasingly rely on real-time data acquisition, automated analysis, and intelligent 

decision-making to ensure stable and high-quality output. A wide spectrum of defect-detection 

approaches is currently available, extending from conventional vision-based and rule-driven 

inspection techniques to more advanced machine learning and deep learning solutions. At the same 

time, the emergence of Industry 4.0 and Quality 4.0 paradigms has accelerated the shift toward smart, 

connected, and adaptive quality control. (Schmitt et al., 2020) However, the selection and deployment 

of appropriate defect-detection methods remain strongly conditioned by multiple constraints. As a 

result, identifying technologies that can both meet stringent quality requirements and remain 

compatible with real industrial conditions has become a central challenge for contemporary 

manufacturing. 

This study addresses a critical gap in the literature: while prior research (Govindan & Arampatzis, 

2023; Haffar et al., 2019; Hendrik et al., 2021; Journal & November, 2024) has separately examined 

defect-detection methods and industrial readiness for digital transformation, few studies have linked 

the technical selection of defect-detection methods with the actual readiness of firms to adopt these 

methods, especially in developing countries. In Algeria, where manufacturing plays a strategic role 

in economic development, the integration of Industry 4.0 technologies into quality management is 

still limited, and the readiness of companies to implement such innovations is not well documented. 

To address this knowledge gap, the present study makes several important contributions to the field 

of quality management and industrial metrology. It introduces a Method-Readiness Framework that 

uniquely bridges the technical selection of defect-detection methods with the actual readiness levels 

of manufacturing firms. Furthermore, the framework delivers actionable insights for Algerian 

companies, offering a stepwise roadmap for adopting advanced defect-detection technologies 

according to their current capabilities. Moreover, this research establishes a foundation for a 

succeeding studies aimed at developing predictive, data-driven models, ensuring continuity in the 

research program and supporting the long-term implementation of Quality 4.0 practices in Algeria.  

The remainder of this paper is organized as follows: Section 2 establishes the theoretical basis and 

analyses existing defect detection and prediction methods to extract relevant technical and practical 

selection criteria. Section 3 presents the empirical investigation of the industrial readiness assessment 

to evaluate the maturity of Algerian firms. Section 4, use MCDM approach to Match feasible methods 

to readiness levels (Inspection technology-readiness mapping). 

1. Existing quality defect detection and prediction methods of industrial product 

A. Methodological framework 

The methodological approach for this section comprised a systematic, multi-stage literature study 

designed to identify and classify methods for detecting and predicting product quality defects. First, 

we established a clear research objective focused on categorizing defect-detection and prediction 

techniques relevant to industrial quality control. Next, we searched primary and secondary 

information repositories (academic databases, conference proceedings, and technical reports) using a 
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variety of targeted query terms (for example, “defect detection”, “defect prediction”, “machine 

learning”, “deep learning”, “industrial vision”, and “quality control classification”)to ensure 

comprehensive coverage of the field. The initial search produced a large corpus of items; these were 

screened by title and abstract to remove clearly irrelevant records. Remaining documents were then 

evaluated against explicit inclusion/exclusion criteria: only works addressing classification, 

development, implementation, or empirical evaluation of quality-control methods were retained; 

inaccessible or off-topic publications were excluded. Finally, the selected literature was critically 

reviewed and synthesized to identify convergent findings, methodological trends, and gaps in 

metrological validation, thereby informing the taxonomy and recommendations presented in this 

study. 

 

Figure 1: research methodology 

 

B. Classification of defect detection and prediction methods for industrial product 

Defect detection methods refers to techniques applying processes performing controls to identify and 

locate various problems and imperfections in order to ensure company’s integrity operations and 

optimize production. (Zsifkovits et al., 2020) Defect identification in manufacturing can be broadly 

classified into two complementary categories. The first is physical detection, which relies on direct 

measurement of the manufactured part using sensing or inspection instruments. The acquired 

measurement data are then evaluated against predefined quality criteria to determine the presence or 

absence of defects. The second category is virtual detection, commonly referred to as virtual 

metrology or predictive inspection. In this approach, product quality is inferred indirectly from 

process-related data acquired through sensors during manufacturing. These data streams are 

processed using statistical and data-driven algorithms to predict defect occurrence without 

performing direct measurements on the finished part. Virtual detection thus enables earlier, faster, 

and often non-destructive quality assessment, while shifting the focus from part-based inspection to 

process-based quality prediction. (Dashti et al., 2021) 

Product quality prediction aims to anticipate the occurrence of defects by analyzing historical 

operational and process data rather than relying solely on post-production inspection. This approach 

exploits pattern recognition techniques and machine learning algorithms to model the relationships 

between process behavior and system reliability. In recent years, predictive analysis has attracted 
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growing scientific interest as a means of enhancing product quality while significantly reducing the 

cost and duration of experimental testing, which represents a substantial portion of the overall 

development effort. (Rostami et al., 2015) Predictive quality assessment is therefore fundamentally 

rooted in manufacturing process data, where recurrent data patterns are extracted, validated, and 

quantitatively associated with measurable quality indicators. (Tercan & Meisen, 2022) 

In table 1, we review the main classifications we obtained in our research: 

Table 1: main defect detection classification 

Reference Classification Presentation 

(Venkatasubramanian 

et al., 2003) 

1. Model-based methods: 

- Analytical 

methods; 

- Knowledge-based 

methods. 

2. History-based methods: 

- Data-driven 

methods; 

- Knowledge-based 

methods 

The categorization is according to the type 

of prior knowledge employed. 

1. Rely on qualitative or quantitative 

physical representations of the process. 

2. Extract diagnostic features from large 

volumes of process data without requiring 

first-principles models. Data-based 

approaches are particularly effective for 

complex systems, enabling cost-efficient 

defect detection through measurement 

data analysis across the product lifecycle. 

(Sun et al., 2015) 1. Signal-based 

approaches; 

2. model-based 

approaches ; 

3. knowledge-based 

approaches ; 

4. hybrid approaches. 

1. Rely on parameterized measurement 

signals (e.g., vibration) for threshold-

based fault detection. 

2. Use dynamic system models and 

residual analysis for decision-making. 

3. including neural networks that emulate 

expert reasoning from complex signals. 

4. integrate multiple techniques to improve 

robustness and diagnostic reliability 

(Bartova & Vachova, 

2019) 

1. The seven basic quality 

tools; 

2. Complexes methods; 

3. Statistical methods ; 

4. Data mining techniques 

1. Process Diagram, Checklist, Histogram, 

Pareto Chart, Correlation Analysis, 

Performance Chart, Ishikawa Diagram. 

2. Quality improvement philosophies and 

management frameworks (TQM, Lean 

Six Sigma, Kaizen, DMAIC, FMEA, 

PDCA, Poka-Yoke, and Quality Circles) 

3. Such as descriptive statistics, ANOVA, 

hypothesis testing, capability indices, 

reliability analysis, and control schemes. 

4. applied to quality management, 

including association rules, clustering, 

decision trees, neural networks, and 

regression analysis for pattern 

recognition and predictive insights. 
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(Yang et al., 2020) 1. Traditional techniques ; 

2. Advanced approaches : 

- Computer vision; 

- Deep learning 

(convolutional neural 

network, Autoencoder 

neural network, Deep 

residual neural 

network, Full 

convolution neural 

network, Recurrent 

neural network) 

1. Include: magnetic particle testing, eddy 

current testing, and ultrasonic 

inspection. 

2. Computer vision analyzes color, texture, 

and geometry for fast, accurate, and 

non-destructive surface quality 

inspection, while deep learning employs 

multi-layer neural networks to automate 

defect recognition and classification 

across diverse industrial applications. 

(Chen et al., 2021) 1. Traditional machine 

vision approaches ; 

2. deep learning-based 

approaches 

1. Rely on feature extraction from texture, 

color, and shape, often combining 

multiple features to improve detection 

accuracy. 

2. Include supervised approaches (e.g., 

classification, detection, and segmentation 

networks such as Siamese, Faster RCNN, 

and Mask RCNN), unsupervised 

approaches (e.g., autoencoders for 

pattern learning without labels), and 

weakly supervised approaches, which 

integrate both strategies to reduce labeling 

effort while maintaining high detection 

performance. 

(Tercan & Meisen, 

2022) 

1. Machine learning 

methods; 

2. Deep learning methods 

- Multilayer Perceptrons for deep neural 

network-based output prediction, 

- Support Vector Machines for supervised 

classification and regression tasks, 

- Random Forests, which leverage 

ensembles of decision trees to improve 

predictive accuracy and reduce bias in 

data-driven modeling. 

C. Analysis and discussion 

A broad body of research demonstrates that defect detection and prediction in manufacturing 

encompass a wide spectrum of approaches, from conventional inspection techniques to advanced 

artificial intelligence-based solutions. These methods are generally applied in two principal contexts: 

 Monitoring, locating, and tracking faults in industrial equipment and processes (such as 

electromechanical systems) to ensure reliable operation; 

 Identifying defects in finished products, including internal structural imperfections and external 

surface anomalies such as dimensional errors or color inconsistencies.  

Recent studies consistently show that machine vision and deep learning-based approaches offer 

superior detection accuracy and improved economic efficiency, particularly in high-throughput 
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production environments. Nevertheless, their effectiveness remains strongly dependent on the 

availability of large, well-annotated datasets. While deep learning currently achieves the most 

promising experimental performance, it is primarily deployed during the manufacturing and 

processing stages rather than at early design phases. 

The literature further highlights that no single defect detection method is universally optimal. Instead, 

method selection must be guided by a set of technical, economic, and operational criteria. These 

include: 

 The physical nature and material properties of the product, which determine the feasibility of 

contact-based or remote inspection techniques; 

 The type, size, and location of potential defects, which influence the suitability of methods 

such as ultrasonic testing, radiography, or visual inspection; 

 The applicable quality standards, which often impose the use of non-destructive techniques.  

 Economic considerations, technological availability, and the level of automation also play a 

decisive role,  

 Environmental conditions such as temperature, vibration, and safety constraints.  

 Human factors, including operator expertise and training requirements, further affect the 

practical deployment of certain techniques. 

 The required sensitivity, reliability, and tolerance to false alarms must be carefully balanced 

against production speed, especially in high-rate manufacturing lines where real-time 

automated inspection is mandatory. 

Effective quality control rarely relies on a single inspection approach. Instead, hybrid strategies that 

integrate multiple complementary techniques (such as combining real-time process monitoring with 

visual inspection) are often adopted to enhance detection robustness and overall system reliability. 

The computational efficiency of machine learning and deep learning models is a critical requirement 

for real-time defect detection in smart manufacturing environments, where inspection decisions must 

be delivered within strict latency constraints. Performance improvements can be achieved through 

two complementary strategies: algorithm-level optimization and hardware-level acceleration. On the 

algorithmic side, real-time capability is enhanced by adopting lightweight model architectures, 

applying pruning and knowledge distillation, and reducing numerical precision through quantization 

or low-rank approximations. Further gains arise from optimized software implementations, including 

efficient computational kernels, graph-level compilation, batching policies, caching, and mixed-

precision arithmetic, as well as from faster training and inference algorithms based on approximate 

optimization and search. From a system perspective, real-time execution is supported by deploying 

models on specialized platforms and by exploiting parallel and distributed computing across multi-

core and multi-device architectures. High-bandwidth memory and low-latency interconnects further 

reduce data transfer bottlenecks. In industrial inspection systems, the most effective real-time 

performance is achieved through the co-design of algorithms and hardware, ensuring that defect 

detection models meet throughput, latency, and metrological reliability requirements simultaneously. 

(Liu et al., 2025) 

2. Empirical investigation of the industrial readiness assessment (Algerian firms) 
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Based on the preceding sections, an increasingly connected and digitized world has emerged. Industry 

4.0 offers new opportunities and has become particularly popular in developed countries. The 

combination of its new technologies (such as Internet of Things, Artificial intelligence, Cloud 

Computing, and computer vision) and emerging ML and DL approaches has contributed to improving 

product quality and strengthening the competitiveness of manufacturing companies in countries 

leveraging these innovations by offering new solutions for automated data analysis. Therefore, 

staying abreast of these technological innovations is imperative.  

To assess the impact of technological advances on product quality in developing economies (with a 

focus on Algeria) and to identify how cutting-edge innovations can enhance competitiveness in 

domestic and international markets, a targeted investigation was conducted. Specifically, this section 

explores the integration of Industry 4.0 technologies into quality control processes within the Algerian 

manufacturing sector. Through a structured questionnaire, the study examines both current quality 

management practices in Algerian firms and the potential pathways through which Algeria, given its 

industrial capabilities, can address existing challenges and leverage Industry 4.0 tools to foster 

innovation and industrial modernization.  

A. Methodological framework 

The development and implementation of the survey instrument adhered to a structured 

methodological sequence, as outlined below: 

 Objective Clarification: Establishing t he precise aims of the study to align all subsequent 

design choices. 

 Sample Selection: Ensuring representativeness by targeting a diverse cross-section of 

Algerian manufacturing firms, varied by region, industrial sector, and company size. 

 Question Design: Formulating clear, concise, and unambiguous items to maximize respondent 

comprehension and accuracy. 

 Questionnaire Structuring: Organizing questions into logical thematic sections to improve 

flow and facilitate ease of completion. 

 Instrument Pre-testing: Administering a preliminary version to a small pilot group to assess 

clarity, functionality, and timing, with adjustments made prior to full deployment. 

 Distribution: Disseminating the finalized questionnaire via electronic and, where feasible, 

direct channels to reach the intended sample. 

 Data Collection: Systematically compiling the completed responses for subsequent analysis. 

 Data Analysis: Processing the collected data using statistical software (e.g., SPSS) to identify 

prevailing trends, extract meaningful insights, and draw evidence-based conclusions. 

The survey was designed to fulfill the following research objectives: 

 To systematically assess the prevailing quality management practices and performance 

levels within Algerian manufacturing enterprises. 

 To identify and characterize the principal challenges and operational constraints impacting 

product quality in the national industrial landscape. 
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 To analyze managerial attitudes, perceptions, and behavioral dispositions towards quality 

enhancement initiatives and technological adoption. 

 To evaluate the extent to which scientific research outputs and technological 

advancements are integrated into local industrial processes and their measurable benefits. 

 To explore pathways for fostering an innovation-centric culture by promoting the strategic 

adoption of Industry 4.0 technologies within the industrial sector. 

 To derive evidence-based recommendations aimed at addressing identified gaps and 

enhancing overall quality performance. 

The questionnaire was disseminated to a purposively selected sample of industrial enterprises to 

ensure broad national representation across Algeria’s geographic regions (North, South, East, and 

West). A target list of 200 companies was compiled, complete with relevant contact details, 

including telephone numbers, email addresses, and physical locations. The survey instrument was 

developed in a bilingual format (French and Arabic) using the Google Forms platform. 

Subsequently, a direct email campaign was initiated, distributing electronic invitations containing 

the bilingual questionnaire link to the identified contacts. 

B. Analysis and discussion of the results 

Fifty responses were collected from companies across diverse geographic locations (see Figure 2), 

comprising 41 submitted electronically and nine in hard-copy format. This yielded a final response 

rate of 25%. In the context of this study, a response rate exceeding 20% was deemed satisfactory for 

analysis. (Zulqarnain & Wasif, 2022) 

 

Figure 2: Geographic Distribution of Responding Companies 
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To facilitate systematic analysis, the survey responses were categorized into six thematic areas, as 

detailed below. 

1) Company Profile 

This section comprised four items designed to capture general firmographics. Respondents 

represented diverse industrial sectors, with participation rates descending as follows: hydrocarbons, 

construction, food processing, automated systems manufacturing, renewable energy, chemicals, and 

healthcare. Company outputs included both solid and liquid products. In terms of size distribution, 

50% of responses originated from medium-sized enterprises, 44% from large corporations, and a 

minor share from small firms. Domestically owned entities constituted over three-quarters of the 

sample, while multinational enterprises (predominantly within the hydrocarbons sector) represented 

the remainder. 

 

Figure 3: Results from the "company profile" section. 

2) Customer Orientation and Feedback 

Four questions assessed customer-centric practices concerning quality requirements and complaint 

management. To evaluate whether a product’s quality meets acceptable standards, 60% of firms rely 

on holistic customer satisfaction metrics, emphasizing service and durability. In contrast, 34% 

prioritize specific attributes such as price, features, and functionality. A significant majority (68%) 

reported encountering stringent customer demands that directly impact quality specifications. To 

align products with these expectations, half of the companies employ active listening channels, 

including social media, surveys, and direct communications. Meanwhile, 30% depend strictly on 

predefined specifications, and a minority (10%) adopt an innovative, empathetic approach by 

anticipating unmet customer needs. (Figure 4) 

Regarding formal complaint resolution, 52% have documented procedures, 22% lack any structured 

process, and approximately 34% utilize either automated or computerized systems for this purpose. 
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Figure 4: Results from" Customer Orientation and Feedback" section 

 

3) Defect Identification and Correction 

The data (illustrated in Figure 5) indicate a strong focus on preventive measures, with 94% of 

companies taking action to eliminate potential causes of non-conformities. Among these, half 

specifically aim to ensure production and delivery adherence to specifications, thereby reducing 

defects and minimizing returns. For corrective actions, 86% of procedures mandate a root-cause 

analysis following a non-conformity. 

²Notably, 46% of firms do not conduct quality inspections at every production stage; only 10% limit 

inspections to finished goods. Inspection duration varies considerably by sector, with hydrocarbon 

industry inspections extending to several weeks. While 12% of companies inspect all output, the 

remainder employ sampling rates that differ across sectors (Figure 6). Defect identification remains 

predominantly manual, though a trend toward automation is emerging. 

 

Figure 5:  Results from "Defect Identification and Correction" section (a)  
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Non-conforming products are typically segregated and discarded; most companies either scrap these 

items or sell them at reduced prices rather than reworking them. According to survey results, human 

error was cited as the primary cause of defects (60%), followed by raw materials, measurement 

inaccuracies, procedural methods, and environmental factors (the latter being particularly influential 

in chemical production). Losses attributed to quality issues were estimated at 5-15%, with nearly all 

factories allocating dedicated resources to address them. 

 

Figure 6: Results from "Defect Identification and Correction" section (b) 

 

4) Quality Management Systems and Standards 

Certification serves as the primary quality benchmark for 54% of companies (Figure 7). Relevant 

standards are documented and accessible in 52% of organizations; however, 78% lack a formal 

quality management system, and 88% do not utilize dedicated quality software. Additionally, quality 

personnel in 28% of firms receive no formal training. 

Despite this, 84% of companies perform quality-critical processes under controlled conditions and 

68% have implemented systems for continuous quality improvement. The seven classic quality tools 

(e.g., Pareto charts) are the most widely adopted improvement methods, with 70% of firms planning 

to integrate additional methodologies in the future. Half of the respondents reported only a moderate 

understanding of organizational quality objectives. 
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Figure 7: Results from "Quality Management Systems and Standards" section 

 

5) Information Availability and Traceability 

Data collection practices show that 74% of companies clearly record whether a product passes or fails 

inspection. Furthermore, 67% have established documented procedures to identify staff training 

needs (Figure 8). Data collection remains predominantly manual, with only 4% of firms employing 

automated systems. For traceability, most companies maintain records for non-conforming materials, 

as well as for the inspection and testing of incoming raw materials, work-in-process, and finished 

goods. 

Firms utilizing modern, data-driven quality control methods consistently establish documented 

procedures to define required competencies and training for quality-related roles, with a strong focus 

on systematic data utilization and processing. 

 

Figure 8: Results from “Information Availability and Traceability” section 

 

6) Industry 4.0 and Quality (Quality 4.0) 

Survey results indicate limited familiarity with Industry 4.0 within the Algerian industrial sector, with 

60% of respondents unaware of the concept. Among those familiar with it, only 18% have a detailed 



13 
 

strategy for future implementation (Figure 9). The most recognized and utilized technologies include 

the Internet of Things (IoT), computer vision, machine/deep learning techniques, and cloud 

computing. (Figure 9) 

 

Figure 9: Results from "Industry 4.0 and Quality (Quality 4.0)" section (a) 

 

A principal barrier to adoption is cultural resistance, with approximately 40% of companies skeptical 

of its benefits. Conversely, 42% have initiated planning and possess personnel capable of leading 

Quality 4.0 initiatives. Additional impediments, ranked in descending order, include: 

 Legacy and obsolete technological systems. 

 Fragmented data quality and integrity. 

 Unclear digital strategy. 

 Shortage of digital skills and specialized talent. 

Primary motivations for pursuing Industry 4.0 adoption are market demands, competitive pressures, 

differentiation opportunities, and an innovative mindset. Respondents identified robotics and data 

analytics as the most strategically important technologies. In practice, 54% of companies currently 

employ data mining technologies (Figure 10). 

  

Figure 10: Results from "Industry 4.0 and Quality (Quality 4.0)" section (b) 
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To examine the relationships between key organizational variables, a series of chi-square tests of 

independence were conducted.  

All analyses were performed using SPSS software, with the significance level set at α = 0.05. 

Test 1: Association between Smart Manufacturing Adoption and Firm Size 

The null hypothesis (H₀) posited that smart manufacturing adoption is independent of firm size.  

The alternative hypothesis (H₁) proposed a significant association between the two variables. 

The computed test statistic (χ² = 7.4845) was less than the critical value (χ²_critical = 9.4) at the 

specified significance level. Consequently, H₀ cannot be rejected, indicating no statistically 

significant relationship between firm size and the adoption of smart manufacturing practices within 

the sample. 

Test 2: Association between Data Collection Automation and Geographic Region 

This test assessed whether the method of quality data collection (automated vs. manual) is 

independent of the company's geographic region. 

H₀ stated independence, while H₁ predicted dependence.  

The analysis yielded an observed statistic of χ² = 12.333, which exceeds the critical value of χ²_critical 

= 5.99. Therefore, H₀ is rejected, confirming a statistically significant association between region and 

the automation of data collection. 

Test 3: Association between Quality Data Collection Method and Region 

Consistent with Test 2, this analysis evaluated the broader relationship between the method of quality 

data collection and region. The hypotheses mirrored those of Test 2. The result (χ²_observed = 12.333 

> χ²_critical = 5.99) leads to the rejection of H₀, reaffirming a significant dependence between 

geographic region and the chosen method for collecting quality data. This finding aligns with and 

substantiates the result from Test 2. 

C. Proposed solutions 

The survey provided critical insights into the prevailing quality assurance methodologies employed 

by manufacturing firms in Algeria. Building upon the analysis of these empirical findings and 

informed by international best practices, this study proposes some strategic solutions to address 

existing challenges and facilitate the integration of Industry 4.0 technologies within the Algerian 

industrial context, comprising the following key steps: 

 Cultivating Organizational Competence: The foundational step involves designing and 

executing specialized capacity-building initiatives focused on Quality 4.0 concepts. Training 
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must be customized to align with firm-specific and sectorial operational contexts, targeting 

the entire workforce to promote universal digital literacy and secure buy-in for sustained 

process enhancement. 

 Diagnostic Analysis of Quality Maturity: A rigorous assessment of current quality systems 

is required to quantify existing capabilities and gaps. This evaluation should leverage 

methodological tools such as process audits, statistical analysis of operational data, and 

systematic solicitation of customer feedback to establish a reliable performance benchmark. 

 Formulation of Targeted Quality Metrics: Strategic quality aims must be articulated as 

precise operational targets. These goals should conform to the SMART framework (ensuring 

they are Specific, Measurable, Achievable, Relevant, and Time-bound) to provide a clear 

directive for implementation and a basis for evaluation. 

 Technology Integration for Quality Enhancement: Organizations must strategically select 

and implement Industry 4.0 enablers to augment quality assurance. Applicable technologies 

may encompass IoT networks for continuous equipment and product monitoring, AI-driven 

analytics for defect prediction, computer vision for automated inspection, and cyber-physical 

systems to streamline production and improve consistency. 

 Iterative Performance Management: Upon deployment of Quality 4.0 projects, a closed-

loop monitoring system must be established. This involves defining and tracking relevant Key 

Performance Indicators (KPIs) to measure efficacy against objectives and to guide data-

driven, continuous optimization efforts. 

 Extended Quality Ecosystem Collaboration: Achieving end-to-end quality necessitates 

proactive integration with supply chain partners. Collaborative quality agreements and shared 

data protocols with suppliers are vital to assure the conformity of incoming materials, thereby 

elevating final product standards and supply chain resilience. 

3. Inspection Technology- Readiness Mapping: An MCDM framework for industrial Quality 

4.0 implementation 

While the proposed solutions defines the strategic pathway for advancing toward Quality 4.0, its 

effective deployment critically depends on the alignment between organizational readiness and 

the technical complexity of the selected quality assurance technologies. In practice, advanced 

tools such as AI-based defect detection, computer vision, and cyber-physical systems cannot be 

implemented uniformly across firms with heterogeneous levels of digital maturity, infrastructure, 

and human capital (particularly in contexts with heterogeneous capabilities like the Algerian 

manufacturing sector). This necessitates a structured mechanism that links the current readiness 

profile of each enterprise to the most technically and economically feasible defect detection and 

inspection methods. To address this requirement, we introduce the Inspection Technology-

Readiness Mapping, which serves as an operational bridge between the strategic Quality 4.0 

roadmap and the concrete selection of defect detection technologies adapted to the real 

capabilities of manufacturing firms. 

Unlike technology-driven approaches that prioritize performance in isolation, the Inspection 

Technology-Readiness framework ensures that defect detection solutions are selected based on 

their technical effectiveness, metrological reliability, economic feasibility, and organizational 

compatibility. In this way, the framework provides manufacturers with a structured mechanism 
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for systematically aligning potential defect detection tools with organization’s operational 

readiness using Multi-Criteria Decision-Making (MCDM). The core objective is not only to 

progress toward Quality 4.0 theoretically, but also practically ensure controlled, scalable, and 

sustainable technology adoption. 

A. Core Conceptual Structure 

The Inspection Technology-Readiness is built upon the explicit coupling of two complementary 

dimensions: 

1. Inspection Technology Dimension: the spectrum of defect detection and inspection strategies 

that can be deployed in manufacturing environments. It ranges from Manual and rule-based visual 

inspection, to Feature-based machine learning (ML), Pre-trained and custom deep learning (DL) 

models, and Cloud-connected, cyber-physical Quality 4.0 platforms. Each class of methods is 

associated with different requirements in terms of data availability, computational resources, 

metrological validation, automation level, and integration complexity. 

2. Readiness Dimension: This dimension captures the organization’s preparedness across multiple 

critical axes, including: Digital and sensing infrastructure, Data availability and quality, 

Workforce skills and training level, Management commitment, Financial and technological 

capacity, Metrological control and traceability. By explicitly coupling these two dimensions, the 

Inspection Technology-Readiness framework ensures that technological ambition is continuously 

bounded by organizational capacity, avoiding premature investments and reducing 

implementation risk. 

B. Integrated MCDM Procedure 

The integration of MCDM provides the rigorous mechanism to evaluate and rank each practical 

alternative against the weighted readiness and performance criteria. The process is 

operationalized through the following structured phases (figure 11): 

Phase 1 Define the decision matrices: In this phase we establish the foundational elements for 

evaluation. 

 Identify Candidate Inspection technologies (Alternatives): Define the set of potential quality 

assurance techniques Ti to be evaluated. For example: T₁: Manual visual inspection with digital 

logging; T₂: Rule-based image processing on local PCs; T₃: Inspection using Machine Learning 

models; T₄: A fully fine-tuned deep learning model with automated defect localization; T₅: A 

cloud-based vision inspection platform with real-time dashboards and strong capabilities. 

 Define Readiness Criteria: Establish the dimensions Rj that quantify organizational preparedness. 

Each criterion is scored for the specific firm on a scale. For instance, R₁: Digital Infrastructure 

(network, servers, and sensors/cameras); R₂: Data Readiness (availability of labeled datasets, data 

governance); R₃: Workforce Skills (IT/AI competency of operators and maintenance staff); R₄: 

Management and Cultural Support (for change and innovation); R₅: Budgetary and Financial 

Flexibility. 
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 Define Performance Criteria: Determine the decision criteria Ck for evaluating the methods, 

assigning strategic weights wk (where ∑wk =1). For instance, C₁: Defect Detection Performance 

(Accuracy, Recall); C₂: Implementation Cost; C₃: Time to Deploy; C₄: Operational Robustness; 

C₅: Scalability and Flexibility; C₆: Interpretability and Operational Acceptance.  

Phase 2 Build the Inspection technology-Method matrix and evaluate performance: This 

phase quantifies the feasibility and expected benefit of each method. 

 Assess readiness compatibility: For each technology Ti, define its minimum readiness 

requirement for each criterion Rj . A score of 1 indicates full readiness; lower scores 

indicate significant gaps. Technologies with score <0.5 can be filtered out as currently 

infeasible. 

 Score Method Performance: Experts score each technology Ti on the performance criteria 

Ck. These scores are normalized to create a standardized performance vector. 

Phase 3: MCDM synthesis for ranking and roadmapping 

This phase synthesizes feasibility and benefit to prioritize actions.  

 Compute composite selection index: An MCDM technique (e.g., TOPSIS, AHP, VIKOR) is 

applied to the performance scores, using the predefined weights wk, to compute final selection 

index which balances theoretical benefit with practical feasibility. 

 Rank Methods and Identify Gaps: The framework outputs are a prioritized list of immediately 

viable technologies (highest final score) and a gap analysis for high-potential but currently 

infeasible technologies, specifying which readiness criteria must be improved and by how 

much. 

Phase 4: Staged implementation and iterative reassessment 

The output translates into a dynamic action plan. 

 Immediate deployment: The highest-ranked method becomes the Phase-1 implementation 

target. 

 Roadmap development: The readiness gaps identified for more advanced methods define 

concrete readiness improvement projects (e.g., "Improve by establishing a data labeling  
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Figure 11: The process of Technology Inspection-Readiness Mapping 

 

protocol and storage system"). 

 Continuous evolution: Periodically (e.g., every 6–12 months), the firm’s readiness profile is 

reassessed. The Inspection Technology-Readiness Mapping evaluation is re-run, enabling a 

structured, evidence-based transition to more advanced technologies in subsequent phases. 

 

Tableau 2 : translate the Inspection Technology-Readiness Framework into practice 

Level Typical 
Capabilities 

Recommended 
Detection 

Methods 

Data 
Requirements 

Metrological 
Requirements 

Strategic 
Objective 

F
o
u

n
d

a
tio

n
a
l 

Basic 

automation  
Limited digital 

infrastructure 

No annotated 
datasets 

Manual 

inspection with 
digital checklists  

Rule-based 

machine vision 
(thresholding, 

morphological 

filters) 

Low-volume 

images 
Structured 

defect labeling 

template 

Camera 

calibration  
Repeatability 

checks  

Basic false-
alarm 

monitoring 

Stabilize 

inspection 
and initiate 

digital data 

acquisition 

D
ev

elo
p

in
g
 

Moderate IT 
infrastructure  

Partial data 

structuring 
Trained 

technicians 

Feature-based 
ML (SVM, RF, 

KNN)  

Hybrid vision-
ML systems 

Medium-scale 
labeled 

datasets  

Engineered 
features 

Performance 
uncertainty 

estimation 

Sensor drift 
monitoring 

Cross-validation 

of classification 

accuracy 

Transition 
from 

deterministic 

to data-driven 
inspection 
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A
d

v
a

n
ced

 

High data 

maturity 
Strong 

computing 

capacity  

AI expertise 

Deep Learning 

(CNN, 
segmentation 

networks) 

Cyber-physical 

Quality 4.0 
platforms 

Large 

annotated 
datasets 

Continuous 

multi-source 

data streams 

Uncertainty 

quantification in 
DL outputs 

Continuous 

calibration 

Traceability to 
national 

standards 

Achieve 

autonomous, 
predictive, 

and adaptive 

quality 

control 

 

Conclusion 

Quality remains a fundamental pillar of industrial performance and competitiveness, whether in 

manufacturing or service-oriented activities. In the context of Industry 4.0, quality management is no 

longer limited to post-production inspection but evolves toward intelligent, data-driven, and 

predictive systems under the paradigm of Quality 4.0, with objectives such as cost reduction, 

improved reliability, and the pursuit of zero defects. However, the effective deployment of advanced 

defect-detection technologies remains strongly conditioned by product characteristics, inspection 

objectives, metrological requirements, and, above all, organizational readiness. 

In this study, a theoretical synthesis of defect-detection techniques was systematically combined with 

empirical survey data collected from fifty Algerian manufacturing companies. Based on this dataset, 

firms were classified into three readiness levels (Foundational, Developing, and Advanced) reflecting 

their technological, organizational, data-related, and metrological capacities. To operationalize the 

transition toward Quality 4.0, the research developed an Inspection Technology-Readiness Mapping 

(ITRM) framework, which bridges method selection criteria with the actual industrial context. 

Supported by expert validation and structured multi-criteria evaluation, this framework explicitly 

connects the technical characteristics of defect-detection methods with the local readiness of Algerian 

firms, offering a concrete and rational basis for technology selection. 

The survey results indicate that while several Algerian firms (particularly multinational subsidiaries) 

are progressing in the adoption of Industry 4.0 technologies such as robotics, IoT, data analytics, 

artificial intelligence, and cloud computing, significant structural challenges persist. These include 

legacy systems, insufficient availability of clean and structured data, data integrity limitations, skills 

gaps, and resistance to organizational change. Nevertheless, the growing awareness of Industry 4.0 

benefits observed in the sample reflects an encouraging shift toward digital transformation in the 

Algerian industrial ecosystem. 

In this context, the proposed ITRM framework serves as a decisive tool for industrial digitalization. 

It forces explicit, evidence-based trade-offs between ideal technological solutions and real operational 

constraints, enhances transparency and managerial buy-in through explainable decision mechanisms, 

and enables scalable and sustainable adoption via a stepwise transition from traditional inspection 

practices to advanced Quality 4.0 systems. By aligning each technological choice with actual 

organizational capability, the framework ensures that digital transformation remains strategic, 

economically viable, and operationally achievable. 
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This research can represent the first stage of a broader scientific program aimed at developing 

predictive, metrologically validated, and multi-objective quality-control models. Future work may 

focus on expanding the study population, performing sectorial and regional readiness analyses, 

conducting international benchmarking with both advanced and comparable economies, and 

quantitatively estimating the economic impacts of Quality 4.0 adoption in terms of productivity, 

efficiency, and competitiveness. Such extensions will further strengthen the role of the ITRM as a 

national decision-support reference for structured and trustworthy Quality 4.0 deployment. 
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