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Abstract

Selecting appropriate defect-detection technologies is a critical challenge in the transition toward
Quality 4.0, particularly in developing industrial contexts. This study proposes an Inspection
Technology-Readiness Mapping (ITRM) framework integrating Multi-Criteria Decision-Making
(MCDM) to support structured and context-aware selection of inspection methods. Based on a survey
of fifty Algerian manufacturing firms, companies are classified into three readiness levels:
Foundational, Developing, and Advanced. The framework quantitatively links each level to
compatible classes of defect-detection technologies while explicitly incorporating metrological
reliability as a decision criterion. The proposed approach delivers a hybrid and actionable roadmap
that connects global technological options with local industrial capabilities. Results highlight both
emerging Industry 4.0 adoption and persistent challenges related to data, skills, and infrastructure,
confirming the practical value of the ITRM for managers and policymakers.

Keywords: Quality control; Industry 4.0; Quality 4.0; Survey; Empirical study; Inspection System;
Acrtificial Intelligence; Defect detection.
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In the current context of globalized manufacturing, where competition is intense and customer
expectations continue to rise, product quality plays a strategic role in enhancing productivity,
optimizing the use of resources, and strengthening customer confidence. Manufacturing companies
are therefore under continuous pressure to integrate quality as a core component of their operational
and strategic decision-making processes. As production systems expand in scale and complexity, the
ability to ensure consistent quality has become a fundamental requirement for survival, growth, and
technological advancement in the industrial sector. (Chen et al., 2021)

Recent advances in digital technologies have profoundly reshaped manufacturing systems,
transforming how products are produced, monitored, and inspected. Modern production
environments increasingly rely on real-time data acquisition, automated analysis, and intelligent
decision-making to ensure stable and high-quality output. A wide spectrum of defect-detection
approaches is currently available, extending from conventional vision-based and rule-driven
inspection techniques to more advanced machine learning and deep learning solutions. At the same
time, the emergence of Industry 4.0 and Quality 4.0 paradigms has accelerated the shift toward smart,
connected, and adaptive quality control. (Schmitt et al., 2020) However, the selection and deployment
of appropriate defect-detection methods remain strongly conditioned by multiple constraints. As a
result, identifying technologies that can both meet stringent quality requirements and remain
compatible with real industrial conditions has become a central challenge for contemporary
manufacturing.

This study addresses a critical gap in the literature: while prior research (Govindan & Arampatzis,
2023; Haffar et al., 2019; Hendrik et al., 2021; Journal & November, 2024) has separately examined
defect-detection methods and industrial readiness for digital transformation, few studies have linked
the technical selection of defect-detection methods with the actual readiness of firms to adopt these
methods, especially in developing countries. In Algeria, where manufacturing plays a strategic role
in economic development, the integration of Industry 4.0 technologies into quality management is
still limited, and the readiness of companies to implement such innovations is not well documented.
To address this knowledge gap, the present study makes several important contributions to the field
of quality management and industrial metrology. It introduces a Method-Readiness Framework that
uniquely bridges the technical selection of defect-detection methods with the actual readiness levels
of manufacturing firms. Furthermore, the framework delivers actionable insights for Algerian
companies, offering a stepwise roadmap for adopting advanced defect-detection technologies
according to their current capabilities. Moreover, this research establishes a foundation for a
succeeding studies aimed at developing predictive, data-driven models, ensuring continuity in the
research program and supporting the long-term implementation of Quality 4.0 practices in Algeria.

The remainder of this paper is organized as follows: Section 2 establishes the theoretical basis and
analyses existing defect detection and prediction methods to extract relevant technical and practical
selection criteria. Section 3 presents the empirical investigation of the industrial readiness assessment
to evaluate the maturity of Algerian firms. Section 4, use MCDM approach to Match feasible methods
to readiness levels (Inspection technology-readiness mapping).

1. Existing quality defect detection and prediction methods of industrial product
A. Methodological framework

The methodological approach for this section comprised a systematic, multi-stage literature study
designed to identify and classify methods for detecting and predicting product quality defects. First,
we established a clear research objective focused on categorizing defect-detection and prediction
techniques relevant to industrial quality control. Next, we searched primary and secondary
information repositories (academic databases, conference proceedings, and technical reports) using a
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variety of targeted query terms (for example, “defect detection”, “defect prediction”, “machine
learning”, “deep learning”, “industrial vision”, and “quality control classification”)to ensure
comprehensive coverage of the field. The initial search produced a large corpus of items; these were
screened by title and abstract to remove clearly irrelevant records. Remaining documents were then
evaluated against explicit inclusion/exclusion criteria: only works addressing classification,
development, implementation, or empirical evaluation of quality-control methods were retained;
inaccessible or off-topic publications were excluded. Finally, the selected literature was critically
reviewed and synthesized to identify convergent findings, methodological trends, and gaps in
metrological validation, thereby informing the taxonomy and recommendations presented in this
study.

Data Base

Choose clear research objective

Use variety of targeted query terms

Selection and screen by title and
abstract

Synthesize and extract relevant
selection criteria

Figure 1: research methodology

B. Classification of defect detection and prediction methods for industrial product

Defect detection methods refers to techniques applying processes performing controls to identify and
locate various problems and imperfections in order to ensure company’s integrity operations and
optimize production. (Zsifkovits et al., 2020) Defect identification in manufacturing can be broadly
classified into two complementary categories. The first is physical detection, which relies on direct
measurement of the manufactured part using sensing or inspection instruments. The acquired
measurement data are then evaluated against predefined quality criteria to determine the presence or
absence of defects. The second category is virtual detection, commonly referred to as virtual
metrology or predictive inspection. In this approach, product quality is inferred indirectly from
process-related data acquired through sensors during manufacturing. These data streams are
processed using statistical and data-driven algorithms to predict defect occurrence without
performing direct measurements on the finished part. Virtual detection thus enables earlier, faster,
and often non-destructive quality assessment, while shifting the focus from part-based inspection to
process-based quality prediction. (Dashti et al., 2021)

Product quality prediction aims to anticipate the occurrence of defects by analyzing historical
operational and process data rather than relying solely on post-production inspection. This approach
exploits pattern recognition techniques and machine learning algorithms to model the relationships
between process behavior and system reliability. In recent years, predictive analysis has attracted
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growing scientific interest as a means of enhancing product quality while significantly reducing the
cost and duration of experimental testing, which represents a substantial portion of the overall
development effort. (Rostami et al., 2015) Predictive quality assessment is therefore fundamentally
rooted in manufacturing process data, where recurrent data patterns are extracted, validated, and
quantitatively associated with measurable quality indicators. (Tercan & Meisen, 2022)

In table 1, we review the main classifications we obtained in our research:

Table 1: main defect detection classification

Reference Classification Presentation
(Venkatasubramanian | 1. Model-based methods: | The categorization is according to the type
et al., 2003) - Analytical of prior knowledge employed.
methods;
- Knowledge-based 1. Rely on qualitative or quantitative
methods. physical representations of the process.
2. History-based methods: 2.Extract diagnostic features from large
- Data-driven volumes of process data without requiring
methods; first-principles models. Data-based
- Knowledge-based approaches are particularly effective for
methods complex systems, enabling cost-efficient

defect detection through measurement
data analysis across the product lifecycle.

(Sun et al., 2015) 1. Signal-based 1. Rely on parameterized measurement
approaches; signals (e.g., vibration) for threshold-
2. model-based based fault detection.
approaches ; 2. Use dynamic system models and
3. knowledge-based residual analysis for decision-making.
approaches ; 3. including neural networks that emulate
4. hybrid approaches. expert reasoning from complex signals.

4. integrate multiple techniques to improve
robustness and diagnostic reliability

(Bartova & Vachova, | 1. The seven basic quality | 1. Process Diagram, Checklist, Histogram,

2019) tools; Pareto Chart, Correlation Analysis,
2. Complexes methods; Performance Chart, Ishikawa Diagram.
3. Statistical methods ; 2. Quality improvement philosophies and
4. Data mining techniques management frameworks (TQM, Lean

Six Sigma, Kaizen, DMAIC, FMEA,
PDCA, Poka-Yoke, and Quality Circles)
3. Such as descriptive statistics, ANOVA,
hypothesis testing, capability indices,
reliability analysis, and control schemes.
4. applied to quality management,
including association rules, clustering,
decision trees, neural networks, and
regression analysis for pattern
recognition and predictive insights.




(Yang et al., 2020) | 1. Traditional techniques ; | 1. Include: magnetic particle testing, eddy

2. Advanced approaches : current testing, and ultrasonic
- Computer vision; inspection.

- Deep learning 2. Computer vision analyzes color, texture,
(convolutional neural and geometry for fast, accurate, and
network, Autoencoder non-destructive surface quality
neural network, Deep inspection, while deep learning employs

residual neural multi-layer neural networks to automate
network, Full defect recognition and classification
convolution neural across diverse industrial applications.

network, Recurrent
neural network)

(Chen et al., 2021) 1. Traditional machine | 1. Rely on feature extraction from texture,
vision approaches ; color, and shape, often combining
2. deep learning-based multiple features to improve detection
approaches accuracy.

2. Include supervised approaches (e.g.,
classification, detection, and segmentation
networks such as Siamese, Faster RCNN,

and Mask RCNN), unsupervised
approaches (e.g., autoencoders for
pattern learning without labels), and
weakly supervised approaches, which
integrate both strategies to reduce labeling
effort while maintaining high detection

performance.
(Tercan & Meisen, 1. Machine learning - Multilayer Perceptrons for deep neural
2022) methods; network-based output prediction,

2. Deep learning methods | - Support Vector Machines for supervised
classification and regression tasks,
- Random Forests, which leverage
ensembles of decision trees to improve
predictive accuracy and reduce bias in
data-driven modeling.

C. Analysis and discussion

A broad body of research demonstrates that defect detection and prediction in manufacturing
encompass a wide spectrum of approaches, from conventional inspection techniques to advanced
artificial intelligence-based solutions. These methods are generally applied in two principal contexts:

e Monitoring, locating, and tracking faults in industrial equipment and processes (such as
electromechanical systems) to ensure reliable operation;

e |dentifying defects in finished products, including internal structural imperfections and external
surface anomalies such as dimensional errors or color inconsistencies.

Recent studies consistently show that machine vision and deep learning-based approaches offer
superior detection accuracy and improved economic efficiency, particularly in high-throughput
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production environments. Nevertheless, their effectiveness remains strongly dependent on the
availability of large, well-annotated datasets. While deep learning currently achieves the most
promising experimental performance, it is primarily deployed during the manufacturing and
processing stages rather than at early design phases.

The literature further highlights that no single defect detection method is universally optimal. Instead,
method selection must be guided by a set of technical, economic, and operational criteria. These
include:

e The physical nature and material properties of the product, which determine the feasibility of
contact-based or remote inspection techniques;

e The type, size, and location of potential defects, which influence the suitability of methods
such as ultrasonic testing, radiography, or visual inspection;

e The applicable quality standards, which often impose the use of non-destructive techniques.

e Economic considerations, technological availability, and the level of automation also play a
decisive role,

e Environmental conditions such as temperature, vibration, and safety constraints.

e Human factors, including operator expertise and training requirements, further affect the
practical deployment of certain techniques.

e The required sensitivity, reliability, and tolerance to false alarms must be carefully balanced
against production speed, especially in high-rate manufacturing lines where real-time
automated inspection is mandatory.

Effective quality control rarely relies on a single inspection approach. Instead, hybrid strategies that
integrate multiple complementary techniques (such as combining real-time process monitoring with
visual inspection) are often adopted to enhance detection robustness and overall system reliability.

The computational efficiency of machine learning and deep learning models is a critical requirement
for real-time defect detection in smart manufacturing environments, where inspection decisions must
be delivered within strict latency constraints. Performance improvements can be achieved through
two complementary strategies: algorithm-level optimization and hardware-level acceleration. On the
algorithmic side, real-time capability is enhanced by adopting lightweight model architectures,
applying pruning and knowledge distillation, and reducing numerical precision through quantization
or low-rank approximations. Further gains arise from optimized software implementations, including
efficient computational kernels, graph-level compilation, batching policies, caching, and mixed-
precision arithmetic, as well as from faster training and inference algorithms based on approximate
optimization and search. From a system perspective, real-time execution is supported by deploying
models on specialized platforms and by exploiting parallel and distributed computing across multi-
core and multi-device architectures. High-bandwidth memory and low-latency interconnects further
reduce data transfer bottlenecks. In industrial inspection systems, the most effective real-time
performance is achieved through the co-design of algorithms and hardware, ensuring that defect
detection models meet throughput, latency, and metrological reliability requirements simultaneously.
(Liu et al., 2025)

2. Empirical investigation of the industrial readiness assessment (Algerian firms)



Based on the preceding sections, an increasingly connected and digitized world has emerged. Industry
4.0 offers new opportunities and has become particularly popular in developed countries. The
combination of its new technologies (such as Internet of Things, Artificial intelligence, Cloud
Computing, and computer vision) and emerging ML and DL approaches has contributed to improving
product quality and strengthening the competitiveness of manufacturing companies in countries
leveraging these innovations by offering new solutions for automated data analysis. Therefore,
staying abreast of these technological innovations is imperative.

To assess the impact of technological advances on product quality in developing economies (with a
focus on Algeria) and to identify how cutting-edge innovations can enhance competitiveness in
domestic and international markets, a targeted investigation was conducted. Specifically, this section
explores the integration of Industry 4.0 technologies into quality control processes within the Algerian
manufacturing sector. Through a structured questionnaire, the study examines both current quality
management practices in Algerian firms and the potential pathways through which Algeria, given its
industrial capabilities, can address existing challenges and leverage Industry 4.0 tools to foster
innovation and industrial modernization.

A. Methodological framework

The development and implementation of the survey instrument adhered to a structured
methodological sequence, as outlined below:

e Objective Clarification: Establishing t he precise aims of the study to align all subsequent
design choices.

e Sample Selection: Ensuring representativeness by targeting a diverse cross-section of
Algerian manufacturing firms, varied by region, industrial sector, and company size.

e Question Design: Formulating clear, concise, and unambiguous items to maximize respondent
comprehension and accuracy.

e Questionnaire Structuring: Organizing questions into logical thematic sections to improve
flow and facilitate ease of completion.

e Instrument Pre-testing: Administering a preliminary version to a small pilot group to assess
clarity, functionality, and timing, with adjustments made prior to full deployment.

e Distribution: Disseminating the finalized questionnaire via electronic and, where feasible,
direct channels to reach the intended sample.

e Data Collection: Systematically compiling the completed responses for subsequent analysis.

e Data Analysis: Processing the collected data using statistical software (e.g., SPSS) to identify
prevailing trends, extract meaningful insights, and draw evidence-based conclusions.

The survey was designed to fulfill the following research objectives:

e To systematically assess the prevailing quality management practices and performance
levels within Algerian manufacturing enterprises.

e Toidentify and characterize the principal challenges and operational constraints impacting
product quality in the national industrial landscape.



e To analyze managerial attitudes, perceptions, and behavioral dispositions towards quality
enhancement initiatives and technological adoption.

e To evaluate the extent to which scientific research outputs and technological
advancements are integrated into local industrial processes and their measurable benefits.

e To explore pathways for fostering an innovation-centric culture by promoting the strategic
adoption of Industry 4.0 technologies within the industrial sector.

e To derive evidence-based recommendations aimed at addressing identified gaps and
enhancing overall quality performance.

The questionnaire was disseminated to a purposively selected sample of industrial enterprises to
ensure broad national representation across Algeria’s geographic regions (North, South, East, and
West). A target list of 200 companies was compiled, complete with relevant contact details,
including telephone numbers, email addresses, and physical locations. The survey instrument was
developed in a bilingual format (French and Arabic) using the Google Forms platform.
Subsequently, a direct email campaign was initiated, distributing electronic invitations containing
the bilingual questionnaire link to the identified contacts.

B. Analysis and discussion of the results

Fifty responses were collected from companies across diverse geographic locations (see Figure 2),
comprising 41 submitted electronically and nine in hard-copy format. This yielded a final response
rate of 25%. In the context of this study, a response rate exceeding 20% was deemed satisfactory for
analysis. (Zulgarnain & Wasif, 2022)
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To facilitate systematic analysis, the survey responses were categorized into six thematic areas, as
detailed below.

1) Company Profile

This section comprised four items designed to capture general firmographics. Respondents
represented diverse industrial sectors, with participation rates descending as follows: hydrocarbons,
construction, food processing, automated systems manufacturing, renewable energy, chemicals, and
healthcare. Company outputs included both solid and liquid products. In terms of size distribution,
50% of responses originated from medium-sized enterprises, 44% from large corporations, and a
minor share from small firms. Domestically owned entities constituted over three-quarters of the
sample, while multinational enterprises (predominantly within the hydrocarbons sector) represented
the remainder.

Domestic and multinational
companies

1 P
i é i i B f f 24% Multinational
1 1
s & & &
¥ &
N S
S

Companies sectors

Domestic

Company

76%

company size Product type

W Small

» Liquid
Solid

Medium-sized

WLarge

Figure 3: Results from the "company profile” section.

2) Customer Orientation and Feedback

Four questions assessed customer-centric practices concerning quality requirements and complaint
management. To evaluate whether a product’s quality meets acceptable standards, 60% of firms rely
on holistic customer satisfaction metrics, emphasizing service and durability. In contrast, 34%
prioritize specific attributes such as price, features, and functionality. A significant majority (68%)
reported encountering stringent customer demands that directly impact quality specifications. To
align products with these expectations, half of the companies employ active listening channels,
including social media, surveys, and direct communications. Meanwhile, 30% depend strictly on
predefined specifications, and a minority (10%) adopt an innovative, empathetic approach by
anticipating unmet customer needs. (Figure 4)

Regarding formal complaint resolution, 52% have documented procedures, 22% lack any structured
process, and approximately 34% utilize either automated or computerized systems for this purpose.



Addressing Stringent Customer
Specifications

B Yes
“ No

B

Strategies for handling customer complaints

We have a
written
procedure
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computerized  automated procedlw
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Criteria for Assessing Product Quality
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- . 1 2
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satisfaction

Specifications
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Feedback
Integration

Measures for Conforming to Customer

Customer Specifications Experience Unforeseen Spirit of
events i
Management

5

Figure 4: Results from™ Customer Orientation and Feedback" section

3) Defect Identification and Correction

The data (illustrated in Figure 5) indicate a strong focus on preventive measures, with 94% of
companies taking action to eliminate potential causes of non-conformities. Among these, half
specifically aim to ensure production and delivery adherence to specifications, thereby reducing
defects and minimizing returns. For corrective actions, 86% of procedures mandate a root-cause
analysis following a non-conformity.

2Notably, 46% of firms do not conduct quality inspections at every production stage; only 10% limit
inspections to finished goods. Inspection duration varies considerably by sector, with hydrocarbon
industry inspections extending to several weeks. While 12% of companies inspect all output, the
remainder employ sampling rates that differ across sectors (Figure 6). Defect identification remains
predominantly manual, though a trend toward automation is emerging.

Preventive actions

The product quality control stage
finished product INEEEEEG—G—_————1
productin progress E—RO!

= Yes
¥ No

Raw materials IEEG—_———

Samples from product

oo —— -
development
B Py ive, not corrective, measures
» No

Identify the Ensure Use
problems compliance precautionary
carly and minimize measures and
defects avoid corrective

ones.

Identification of manufacturing defects

‘vn-ﬂ
20%

= Manual 3
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Automatic \‘

|
f
P

lnspccu.d sample rate

‘" u.'

1
I l l

4l *‘ v "0‘0‘&‘0‘4‘///9/

Handling of detected

non-compliant products

OheT gy

Treatments at the end ol'—

production
during

Sell them at low prices pu——tge

Discard them  SES——

Figure 5: Results from "Defect Identification and Correction™ section (a)
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Non-conforming products are typically segregated and discarded; most companies either scrap these
items or sell them at reduced prices rather than reworking them. According to survey results, human
error was cited as the primary cause of defects (60%), followed by raw materials, measurement
inaccuracies, procedural methods, and environmental factors (the latter being particularly influential
in chemical production). Losses attributed to quality issues were estimated at 5-15%, with nearly all
factories allocating dedicated resources to address them.

Quality problem assessment Availability of necessary resources
.
- « Yes
N » No
5% 10% 15% Others

Quality problems causes . .
P Most product defects main cause

environmental factor 6

inadequate process control 10 Measurements  [IRE VA
1 Methods o i QA
Lack of coordination 13 Environment [CH
Workforce |}
poordesign |2

Equipment RN ()
Raw materials |y

o s 10 135 0 3 ¥ B

process vanation 19

Figure 6: Results from "Defect Identification and Correction™ section (b)

4) Quality Management Systems and Standards

Certification serves as the primary quality benchmark for 54% of companies (Figure 7). Relevant
standards are documented and accessible in 52% of organizations; however, 78% lack a formal
quality management system, and 88% do not utilize dedicated quality software. Additionally, quality
personnel in 28% of firms receive no formal training.

Despite this, 84% of companies perform quality-critical processes under controlled conditions and
68% have implemented systems for continuous quality improvement. The seven classic quality tools
(e.g., Pareto charts) are the most widely adopted improvement methods, with 70% of firms planning
to integrate additional methodologies in the future. Half of the respondents reported only a moderate
understanding of organizational quality objectives.
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Figure 7: Results from "Quality Management Systems and Standards™ section

5) Information Availability and Traceability

Data collection practices show that 74% of companies clearly record whether a product passes or fails
inspection. Furthermore, 67% have established documented procedures to identify staff training
needs (Figure 8). Data collection remains predominantly manual, with only 4% of firms employing
automated systems. For traceability, most companies maintain records for non-conforming materials,
as well as for the inspection and testing of incoming raw materials, work-in-process, and finished
goods.

Firms utilizing modern, data-driven quality control methods consistently establish documented
procedures to define required competencies and training for quality-related roles, with a strong focus
on systematic data utilization and processing.
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Figure 8: Results from “Information Availability and Traceability” section

6) Industry 4.0 and Quality (Quality 4.0)

Survey results indicate limited familiarity with Industry 4.0 within the Algerian industrial sector, with
60% of respondents unaware of the concept. Among those familiar with it, only 18% have a detailed
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strategy for future implementation (Figure 9). The most recognized and utilized technologies include
the Internet of Things (loT), computer vision, machine/deep learning techniques, and cloud

computing. (Figure 9)
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Figure 9: Results from "Industry 4.0 and Quality (Quality 4.0)" section (a)

A principal barrier to adoption is cultural resistance, with approximately 40% of companies skeptical

of its benefits. Conversely,

Quality 4.0 initiatives. Additional impediments, ranked in descending order, include:

42% have initiated planning and possess personnel capable of leading

e Legacy and obsolete technological systems.

o Fragmented data quality and integrity.

e Unclear digital strategy.

o Shortage of digital skills and specialized talent.

Primary motivations for pursuing Industry 4.0 adoption are market demands, competitive pressures,
differentiation opportunities, and an innovative mindset. Respondents identified robotics and data
analytics as the most strategically important technologies. In practice, 54% of companies currently
employ data mining technologies (Figure 10).
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Figure 10: Results from "Industry 4.0 and Quality (Quality 4.0)" section (b)
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To examine the relationships between key organizational variables, a series of chi-square tests of
independence were conducted.

All analyses were performed using SPSS software, with the significance level set at a = 0.05.
Test 1: Association between Smart Manufacturing Adoption and Firm Size

The null hypothesis (Ho) posited that smart manufacturing adoption is independent of firm size.
The alternative hypothesis (H:) proposed a significant association between the two variables.

The computed test statistic (y? = 7.4845) was less than the critical value (y2 critical = 9.4) at the
specified significance level. Consequently, Ho cannot be rejected, indicating no statistically
significant relationship between firm size and the adoption of smart manufacturing practices within
the sample.

Test 2: Association between Data Collection Automation and Geographic Region

This test assessed whether the method of quality data collection (automated vs. manual) is
independent of the company's geographic region.

Ho stated independence, while H: predicted dependence.

The analysis yielded an observed statistic of y2 = 12.333, which exceeds the critical value of 42 _critical
= 5.99. Therefore, Ho is rejected, confirming a statistically significant association between region and
the automation of data collection.

Test 3: Association between Quality Data Collection Method and Region

Consistent with Test 2, this analysis evaluated the broader relationship between the method of quality
data collection and region. The hypotheses mirrored those of Test 2. The result (¥2_observed = 12.333
> y2 critical = 5.99) leads to the rejection of Ho, reaffirming a significant dependence between
geographic region and the chosen method for collecting quality data. This finding aligns with and
substantiates the result from Test 2.

C. Proposed solutions

The survey provided critical insights into the prevailing quality assurance methodologies employed
by manufacturing firms in Algeria. Building upon the analysis of these empirical findings and
informed by international best practices, this study proposes some strategic solutions to address
existing challenges and facilitate the integration of Industry 4.0 technologies within the Algerian
industrial context, comprising the following key steps:

e Cultivating Organizational Competence: The foundational step involves designing and
executing specialized capacity-building initiatives focused on Quality 4.0 concepts. Training
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must be customized to align with firm-specific and sectorial operational contexts, targeting
the entire workforce to promote universal digital literacy and secure buy-in for sustained
process enhancement.

e Diagnostic Analysis of Quality Maturity: A rigorous assessment of current quality systems
is required to quantify existing capabilities and gaps. This evaluation should leverage
methodological tools such as process audits, statistical analysis of operational data, and
systematic solicitation of customer feedback to establish a reliable performance benchmark.

e Formulation of Targeted Quality Metrics: Strategic quality aims must be articulated as
precise operational targets. These goals should conform to the SMART framework (ensuring
they are Specific, Measurable, Achievable, Relevant, and Time-bound) to provide a clear
directive for implementation and a basis for evaluation.

e Technology Integration for Quality Enhancement: Organizations must strategically select
and implement Industry 4.0 enablers to augment quality assurance. Applicable technologies
may encompass IoT networks for continuous equipment and product monitoring, Al-driven
analytics for defect prediction, computer vision for automated inspection, and cyber-physical
systems to streamline production and improve consistency.

e lterative Performance Management: Upon deployment of Quality 4.0 projects, a closed-
loop monitoring system must be established. This involves defining and tracking relevant Key
Performance Indicators (KPIs) to measure efficacy against objectives and to guide data-
driven, continuous optimization efforts.

e Extended Quality Ecosystem Collaboration: Achieving end-to-end quality necessitates
proactive integration with supply chain partners. Collaborative quality agreements and shared
data protocols with suppliers are vital to assure the conformity of incoming materials, thereby
elevating final product standards and supply chain resilience.

3. Inspection Technology- Readiness Mapping: An MCDM framework for industrial Quality
4.0 implementation

While the proposed solutions defines the strategic pathway for advancing toward Quality 4.0, its
effective deployment critically depends on the alignment between organizational readiness and
the technical complexity of the selected quality assurance technologies. In practice, advanced
tools such as Al-based defect detection, computer vision, and cyber-physical systems cannot be
implemented uniformly across firms with heterogeneous levels of digital maturity, infrastructure,
and human capital (particularly in contexts with heterogeneous capabilities like the Algerian
manufacturing sector). This necessitates a structured mechanism that links the current readiness
profile of each enterprise to the most technically and economically feasible defect detection and
inspection methods. To address this requirement, we introduce the Inspection Technology-
Readiness Mapping, which serves as an operational bridge between the strategic Quality 4.0
roadmap and the concrete selection of defect detection technologies adapted to the real
capabilities of manufacturing firms.

Unlike technology-driven approaches that prioritize performance in isolation, the Inspection
Technology-Readiness framework ensures that defect detection solutions are selected based on
their technical effectiveness, metrological reliability, economic feasibility, and organizational
compatibility. In this way, the framework provides manufacturers with a structured mechanism
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for systematically aligning potential defect detection tools with organization’s operational
readiness using Multi-Criteria Decision-Making (MCDM). The core objective is not only to
progress toward Quality 4.0 theoretically, but also practically ensure controlled, scalable, and
sustainable technology adoption.

A. Core Conceptual Structure

The Inspection Technology-Readiness is built upon the explicit coupling of two complementary
dimensions:

1. Inspection Technology Dimension: the spectrum of defect detection and inspection strategies
that can be deployed in manufacturing environments. It ranges from Manual and rule-based visual
inspection, to Feature-based machine learning (ML), Pre-trained and custom deep learning (DL)
models, and Cloud-connected, cyber-physical Quality 4.0 platforms. Each class of methods is
associated with different requirements in terms of data availability, computational resources,
metrological validation, automation level, and integration complexity.

2. Readiness Dimension: This dimension captures the organization’s preparedness across multiple
critical axes, including: Digital and sensing infrastructure, Data availability and quality,
Workforce skills and training level, Management commitment, Financial and technological
capacity, Metrological control and traceability. By explicitly coupling these two dimensions, the
Inspection Technology-Readiness framework ensures that technological ambition is continuously
bounded by organizational capacity, avoiding premature investments and reducing
implementation risk.

B. Integrated MCDM Procedure

The integration of MCDM provides the rigorous mechanism to evaluate and rank each practical
alternative against the weighted readiness and performance criteria. The process is
operationalized through the following structured phases (figure 11):

Phase 1 Define the decision matrices: In this phase we establish the foundational elements for
evaluation.

Identify Candidate Inspection technologies (Alternatives): Define the set of potential quality
assurance techniques Tito be evaluated. For example: T:: Manual visual inspection with digital
logging; T2: Rule-based image processing on local PCs; Ts: Inspection using Machine Learning
models; Ta: A fully fine-tuned deep learning model with automated defect localization; Ts: A
cloud-based vision inspection platform with real-time dashboards and strong capabilities.

Define Readiness Criteria: Establish the dimensions R;j that quantify organizational preparedness.
Each criterion is scored for the specific firm on a scale. For instance, Ri: Digital Infrastructure
(network, servers, and sensors/cameras); R.: Data Readiness (availability of labeled datasets, data
governance); Rs: Workforce Skills (IT/Al competency of operators and maintenance staff); Ra:
Management and Cultural Support (for change and innovation); Rs: Budgetary and Financial
Flexibility.
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e Define Performance Criteria: Determine the decision criteria Cx for evaluating the methods,
assigning strategic weights wi (where Y wk =1). For instance, Ci: Defect Detection Performance
(Accuracy, Recall); Cz: Implementation Cost; Cs: Time to Deploy; Ca: Operational Robustness;
Cs: Scalability and Flexibility; Ce: Interpretability and Operational Acceptance.

Phase 2 Build the Inspection technology-Method matrix and evaluate performance: This
phase quantifies the feasibility and expected benefit of each method.

e Assess readiness compatibility: For each technology Ti, define its minimum readiness
requirement for each criterion R; . A score of 1 indicates full readiness; lower scores
indicate significant gaps. Technologies with score <0.5 can be filtered out as currently
infeasible.

e Score Method Performance: Experts score each technology Ti on the performance criteria
Ck. These scores are normalized to create a standardized performance vector.

Phase 3: MCDM synthesis for ranking and roadmapping
This phase synthesizes feasibility and benefit to prioritize actions.

e Compute composite selection index: An MCDM technique (e.g., TOPSIS, AHP, VIKOR) is
applied to the performance scores, using the predefined weights wy, to compute final selection
index which balances theoretical benefit with practical feasibility.

e Rank Methods and Identify Gaps: The framework outputs are a prioritized list of immediately
viable technologies (highest final score) and a gap analysis for high-potential but currently
infeasible technologies, specifying which readiness criteria must be improved and by how
much.

Phase 4: Staged implementation and iterative reassessment
The output translates into a dynamic action plan.

e Immediate deployment: The highest-ranked method becomes the Phase-1 implementation
target.

e Roadmap development: The readiness gaps identified for more advanced methods define
concrete readiness improvement projects (e.g., "Improve by establishing a data labeling
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Figure 11: The process of Technology Inspection-Readiness Mapping

protocol and storage system™).
Continuous evolution: Periodically (e.g., every 6—12 months), the firm’s readiness profile is
reassessed. The Inspection Technology-Readiness Mapping evaluation is re-run, enabling a
structured, evidence-based transition to more advanced technologies in subsequent phases.

Tableau 2 : translate the Inspection Technology-Readiness Framework into practice

Level

[euoirepunoH

Buidojanag

Typical
Capabilities

Basic
automation
Limited digital
infrastructure
No annotated
datasets

Moderate IT
infrastructure
Partial data
structuring
Trained
technicians

Recommended
Detection
Methods
Manual
inspection with
digital checklists
Rule-based
machine vision
(thresholding,
morphological
filters)
Feature-based
ML (SVM, RF,
KNN)
Hybrid  vision-
ML systems

Data
Requirements

Low-volume
images
Structured
defect labeling
template

Medium-scale
labeled
datasets
Engineered
features

Metrological
Requirements

Camera
calibration
Repeatability
checks

Basic false-
alarm
monitoring

Performance
uncertainty
estimation
Sensor drift
monitoring
Cross-validation
of classification
accuracy

Strategic
Obijective

Stabilize
inspection
and initiate
digital data
acquisition

Transition
from
deterministic
to data-driven
inspection
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platforms national
standards
Conclusion

Quality remains a fundamental pillar of industrial performance and competitiveness, whether in
manufacturing or service-oriented activities. In the context of Industry 4.0, quality management is no
longer limited to post-production inspection but evolves toward intelligent, data-driven, and
predictive systems under the paradigm of Quality 4.0, with objectives such as cost reduction,
improved reliability, and the pursuit of zero defects. However, the effective deployment of advanced
defect-detection technologies remains strongly conditioned by product characteristics, inspection
objectives, metrological requirements, and, above all, organizational readiness.

In this study, a theoretical synthesis of defect-detection techniques was systematically combined with
empirical survey data collected from fifty Algerian manufacturing companies. Based on this dataset,
firms were classified into three readiness levels (Foundational, Developing, and Advanced) reflecting
their technological, organizational, data-related, and metrological capacities. To operationalize the
transition toward Quality 4.0, the research developed an Inspection Technology-Readiness Mapping
(ITRM) framework, which bridges method selection criteria with the actual industrial context.
Supported by expert validation and structured multi-criteria evaluation, this framework explicitly
connects the technical characteristics of defect-detection methods with the local readiness of Algerian
firms, offering a concrete and rational basis for technology selection.

The survey results indicate that while several Algerian firms (particularly multinational subsidiaries)
are progressing in the adoption of Industry 4.0 technologies such as robotics, 10T, data analytics,
artificial intelligence, and cloud computing, significant structural challenges persist. These include
legacy systems, insufficient availability of clean and structured data, data integrity limitations, skills
gaps, and resistance to organizational change. Nevertheless, the growing awareness of Industry 4.0
benefits observed in the sample reflects an encouraging shift toward digital transformation in the
Algerian industrial ecosystem.

In this context, the proposed ITRM framework serves as a decisive tool for industrial digitalization.
It forces explicit, evidence-based trade-offs between ideal technological solutions and real operational
constraints, enhances transparency and managerial buy-in through explainable decision mechanisms,
and enables scalable and sustainable adoption via a stepwise transition from traditional inspection
practices to advanced Quality 4.0 systems. By aligning each technological choice with actual
organizational capability, the framework ensures that digital transformation remains strategic,
economically viable, and operationally achievable.
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This research can represent the first stage of a broader scientific program aimed at developing
predictive, metrologically validated, and multi-objective quality-control models. Future work may
focus on expanding the study population, performing sectorial and regional readiness analyses,
conducting international benchmarking with both advanced and comparable economies, and
quantitatively estimating the economic impacts of Quality 4.0 adoption in terms of productivity,
efficiency, and competitiveness. Such extensions will further strengthen the role of the ITRM as a
national decision-support reference for structured and trustworthy Quality 4.0 deployment.
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