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Abstract 

Objective: This study aims to develop an integrated optimization framework for cross-

border e-commerce (CBEC) logistics that simultaneously addresses multimodal 

transport route planning and energy type selection. It seeks to analyze how carbon 

pricing, delivery time constraints, and technological choices interact to shape cost-

effective and sustainable supply chain strategies. 

Methods: A multi-objective analytical framework is proposed, incorporating primary 

path variables and secondary energy-choice variables. The framework is applied 
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empirically to the China-Europe trade corridor using scenario analysis based on real-

world data, including freight rates, transit times, and emission factors. Carbon cost 

internalization is modeled to compute Green Adjusted Total Cost (GATC), and 

sensitivity analysis is conducted to identify critical carbon price thresholds. 

Results: The analysis reveals that carbon pricing significantly reshuffles the 

competitiveness of logistics modes. At a carbon price of approximately $55/ton, the 

China-Europe Railway Express with LNG drayage becomes more cost-effective than 

traditional sea freight for standard 18-day deliveries. For expedited deliveries, energy 

switching within fixed routes emerges as an initial decarbonization lever. Clear carbon 

price thresholds trigger modal shifts and energy technology adoption, demonstrating 

that sustainable options become economically rational under realistic carbon pricing 

scenarios. 

Conclusion: The synergistic optimization of transport paths and energy choices is 

essential for achieving sustainable and efficient CBEC logistics. Carbon pricing acts as 

a transformative mechanism that aligns environmental and economic objectives, while 

flexible energy selection within multimodal networks offers a practical pathway for 

decarbonization. The study underscores the need for dynamic, carbon-aware routing, 

supportive infrastructure investments, and policy frameworks that incentivize green 

transitions in global supply chains. 

Acknowledgements: The author declares that there is no conflict of interest. 
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1. Introduction 

In the era of deepening global economic integration and digital transformation, the 

logistics and supply chain sectors are undergoing profound and structural changes. This 

evolution is particularly pronounced in two burgeoning and increasingly interconnected 

domains: the international trade of energy commodities and the dynamic field of cross-

border e-commerce (CBEC). The traditional models governing these sectors are being 

challenged by demands for greater efficiency, transparency, sustainability, and 

resilience. As Zhang (2021) points out, optimizing the logistics distribution network is 

a cornerstone for enhancing the operational performance of modern trade systems. 

Concurrently, the imperative for sustainable development has thrust environmental 

considerations, notably carbon emissions, to the forefront of logistics planning. 

Integrating these multifaceted objectives—cost, speed, reliability, and ecological 

impact—presents a complex optimization puzzle that traditional linear approaches are 
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ill-equipped to solve. 

The rise of cross-border e-commerce has fundamentally reshaped consumer 

expectations and logistics requirements. Characterized by small batch sizes, high 

frequency, and stringent delivery timelines, CBEC demands a logistics infrastructure 

that is both agile and robust. As highlighted in the literature (He, Wu, & Choi, 2021; 

Liu et al., 2022), the associated logistics costs and risks represent a significant 

bottleneck for the sector's growth. To navigate the vast geographical spans involved, 

multimodal transportation—seamlessly integrating air, sea, rail, and road segments—

has emerged as the dominant paradigm. However, optimizing such multimodal 

networks is not merely about selecting the cheapest or fastest individual leg. It involves 

a holistic consideration of the entire chain, from international long-haul freight to the 

critical "last-mile" delivery, where innovations like truck-drone collaborations are 

gaining traction (Dorling et al., 2017; Karak & Abdelghany, 2019). The work of Xu, Di 

Nardo, and Yin (2024) underscores this complexity by constructing an integrated model 

that spans from air cargo transport to final delivery via vehicles and drones, aiming to 

minimize cost and carbon emissions while maximizing customer satisfaction. 

Parallel to the logistics revolution in CBEC, the global energy trade is itself 

experiencing a digital and green transformation. The concept of "energy cross-border 

e-commerce" represents the convergence of information and communication 

technologies (ICT) with energy systems, aiming to create more flexible, efficient, and 

transparent markets for electricity and other energy commodities (as discussed in the 

first provided paper). This paradigm seeks to optimize the allocation of energy 

resources across borders, much like goods in CBEC, addressing issues such as the 

integration of intermittent renewable sources and improving overall system efficiency. 

The optimization challenges here are similarly multidimensional, often requiring the 

balancing of technical constraints, market dynamics, and policy objectives. 

At the heart of addressing these complex, multi-objective optimization problems in both 

CBEC logistics and energy trade lie advanced computational intelligence algorithms. 

Traditional single-objective solvers fall short when facing conflicting goals such as 

minimizing cost versus minimizing carbon footprint, or maximizing delivery speed 

versus ensuring vehicle load efficiency. Consequently, evolutionary multi-objective 

optimization algorithms (EMO) like the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) and decomposition-based approaches such as the Multi-Objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) have become 

indispensable tools (Wang, Li, Li, & Zhang, 2024). More recently, novel swarm 
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intelligence algorithms, including the Sand Cat Swarm Optimization (SCSO) algorithm 

proposed by Seyyedabbasi and Kiani (2023), have demonstrated superior performance 

in navigating complex solution spaces and avoiding local optima, offering promising 

avenues for developing high-performance decision-support optimizers. 

This paper is situated at the intersection of these critical trends. We posit that the future 

efficiency and sustainability of both physical goods logistics (exemplified by CBEC) 

and digital energy commodity trade depend on sophisticated, integrated optimization 

models powered by advanced computational intelligence. While existing research has 

made significant strides—such as optimizing specific legs of the journey (Fan et al., 

2020; Zheng et al., 2023) or focusing solely on cost or emissions—a gap remains in 

holistically modeling the synergistic optimization of transportation paths and energy 

technology choices under the dual pressures of e-commerce time constraints and carbon 

pricing mechanisms. Therefore, this study aims to bridge this gap. It seeks to develop a 

comprehensive analytical framework and optimization model that not only plans 

multimodal routes but also explicitly selects the energy type (e.g., diesel, LNG, electric) 

for each transport segment, internalizing carbon costs to guide decisions towards truly 

sustainable and economically viable supply chains. By doing so, this research aims to 

provide actionable insights for logistics managers, e-commerce platforms, energy 

traders, and policymakers navigating the decarbonized future of global trade. 

2. Literature Review 

2.1 Optimization in Cross-Border E-commerce Logistics 

The optimization of logistics networks for cross-border e-commerce has attracted 

considerable scholarly attention, driven by the sector's explosive growth and unique 

operational challenges. Early and fundamental work in this area often treated logistics 

as a variant of the classic Vehicle Routing Problem (VRP). However, the CBEC context 

introduces layers of complexity, including international border crossings, multimodal 

transport coordination, and intense pressure on delivery times. Liu et al. (2022) provide 

a systematic review of these challenges in the Chinese context, identifying logistics cost 

and risk as primary developmental bottlenecks. In response, researchers have developed 

increasingly sophisticated models. 

A significant stream of research focuses on multimodal integration. Fan et al. (2020) 

proposed an intelligent logistics integration model separating internal and external 

transportation, highlighting the efficiency gains from coordinated planning. Chen, Peng, 

Lian, and Yang (2023) specifically optimized a Japan-Europe multimodal corridor, 

considering cost and time trade-offs. These studies affirm that breaking away from 
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unimodal planning is essential for CBEC. Furthermore, the last-mile delivery segment, 

critical for customer satisfaction, has evolved beyond traditional trucks. The 

collaboration between trucks and drones has been extensively studied as a means to 

boost efficiency. Dorling et al. (2017) framed the vehicle-drone routing problem, while 

Karak and Abdelghany (2019) explored it for pick-up and delivery services. Recent 

work by Xu et al. (2024) integrates this last-mile model with preceding long-haul air 

freight, presenting a more complete picture of the CBEC logistics chain. 

The objectives of optimization have also expanded from a singular focus on 

cost. Customer satisfaction, often modeled through time window adherence, is now a 

common objective. Zheng et al. (2023) employed fuzzy clustering to analyze e-

commerce customer demands for logistics distribution, incorporating satisfaction into 

their optimization model. Similarly, Xu et al. (2024) use fuzzy theory to model 

consumer satisfaction based on delivery time, integrating it directly into their multi-

objective function. Concurrently, the environmental dimension has become 

unavoidable. Cheah and Huang (2021) conducted a comparative carbon footprint 

assessment of different CBEC shipping options, providing crucial data for emission-

aware models. Zhang, Tang, Zhang, and Gou (2023) explicitly included carbon 

emission costs in optimizing distribution routes for chain supermarkets. Xu et al. (2024) 

incorporate carbon emissions from both air and road transport as a core objective, 

reflecting the industry's move towards triple-bottom-line optimization (cost, service, 

environment). 

2.2 Algorithmic Approaches for Complex Logistics Optimization 

Solving the high-dimensional, constrained, and multi-objective problems inherent in 

modern logistics requires advanced algorithmic strategies. Traditional exact methods 

are often computationally prohibitive for real-world-scale problems, leading to the 

dominance of meta-heuristic and swarm intelligence algorithms. 

Evolutionary Multi-Objective Optimization (EMO) algorithms have a long history in 

this field. Algorithms like NSGA-II, which uses non-dominated sorting and crowding 

distance, are benchmark tools for generating Pareto-optimal solution sets (Wang et al., 

2024). The MOEA/D framework, which decomposes a multi-objective problem into 

several single-objective sub-problems, has also proven highly effective and is 

frequently used as a basis for further improvements, as seen in the analysis of 

algorithms like MOEA/D-AW in the context of energy trade optimization. These 

algorithms are prized for their ability to handle non-linear, non-convex problem spaces 

and provide a set of trade-off solutions for decision-makers. 



6 

 

More recently, novel swarm intelligence algorithms have shown remarkable 

performance. The Sand Cat Swarm Optimization (SCSO) algorithm, inspired by the 

hunting behavior of sand cats, is a notable newcomer. Seyyedabbasi and Kiani (2023) 

demonstrated its efficacy in global optimization problems. Xu et al. (2024) adopted and 

improved the SCSO algorithm (using chaotic initialization, elite retention, and 

nonlinear weights) to solve their integrated CBEC logistics model, reporting superior 

results compared to established algorithms like the Bat Algorithm (BA) (Yang, 2010) 

and Cuckoo Search Algorithm (CSA) (Caselli et al., 2021). Other nature-inspired 

algorithms like Particle Swarm Optimization (PSO) and Ant Colony Optimization 

(ACO) continue to be actively applied and hybridized, as seen in UAV path planning 

research (Wang, Zhang, Gao, Zheng, & Wang, 2023; Aljuaid, Kurdi, & Youcef-Toumi, 

2023). 

2.3 Optimization in Energy Trade and System Planning 

While distinct from physical goods logistics, the optimization of energy systems and 

cross-border energy trade presents analogous modeling challenges. The provided paper 

on "Global Energy Trade Cross Border E-commerce Optimization Model" 

conceptualizes an intelligent, platform-based energy trading ecosystem. This mirrors 

the digital marketplace model of CBEC but applies it to flows of electricity and other 

energy forms. The optimization challenges involve balancing supply and demand 

across a network, integrating distributed and renewable sources, and ensuring system 

stability—all under technical and economic constraints. 

The literature within this domain heavily utilizes multi-objective optimization 

algorithms to navigate these trade-offs. The discussion of algorithms like MOEA/D-

US and MOEA/D-AW for solving test functions (e.g., WFG1-WFG9) underscores the 

field's reliance on advanced EMO techniques to find Pareto-optimal allocations of 

energy resources. The goal is to move beyond single-metric optimization (e.g., lowest 

cost) to solutions that simultaneously consider efficiency, reliability, equity, and 

environmental impact. This parallel development in energy informatics reinforces the 

central thesis of our study: that the future of complex, networked systems—whether 

transporting parcels or electrons—depends on sophisticated, multi-criteria decision-

support tools powered by cutting-edge optimization algorithms. 

2.4 Synthesis and Identified Research Gap 

The reviewed literature reveals two vibrant, parallel streams of research: one advancing 

multimodal, multi-objective logistics optimization for CBEC, and another developing 

intelligent optimization frameworks for energy system and trade management. Both 
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streams increasingly emphasize environmental sustainability and leverage advanced 

computational intelligence algorithms. However, a critical gap persists at their 

intersection. Existing CBEC logistics models, even those incorporating carbon 

emissions, typically treat the energy type (e.g., fuel choice for trucks or ships) as a fixed 

parameter generating a given emission factor, not as a decision variable. Conversely, 

energy system models focus on the commodity being traded (energy itself) rather than 

the logistics of physical goods. 

This study aims to bridge this gap. We integrate the decision of transport energy 

technology selection (diesel vs. LNG vs. electric) directly into the multimodal path 

optimization problem for CBEC logistics. This creates a truly synergistic model where 

the choice of route and the choice of propulsion technology are co-optimized, with 

carbon costs explicitly internalized. This approach draws inspiration from the multi-

objective, system-wide optimization philosophy prevalent in both fields but applies it 

to a novel and pressing problem: decarbonizing the international physical supply chains 

that underpin the global e-commerce economy. By doing so, we respond to the call for 

more comprehensive and realistic models that can guide the transition to sustainable 

and resilient trade networks. 

3. Analytical Framework for Integrated Path and Energy Strategy 

This chapter presents the core analytical framework developed to investigate the 

synergistic optimization of transport routes and energy choices within cross-border e-

commerce logistics. The goal is to move beyond descriptive analysis and establish a 

structured, causal model that explains how and under what conditions the selection of 

specific transportation paths and fuel technologies interact to shape overall logistical 

performance, cost, and environmental footprint. This framework is designed not as a 

complex, black-box mathematical algorithm for immediate operational scheduling, but 

as a strategic decision-support tool. It clarifies the critical trade-offs and leverage points 

that managers and policymakers must consider when designing resilient and sustainable 

international supply chains in the era of decarbonization. 

3.1 The Core Triad of Strategic Tensions 

The fundamental challenge lies in balancing three interconnected, and often competing, 

strategic objectives, forming the central "Triad of Tensions" for CBEC multimodal 

logistics: 

1. The Imperative of Speed and Reliability: CBEC's direct-to-consumer model makes 

delivery time a primary competitive differentiator. A "time window" is not merely a soft 

target but a hard constraint linked to platform seller performance metrics, customer 
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satisfaction, and the risk of returns. This speed imperative inherently favors modes like 

air freight and premium road services, which are typically the most carbon-intensive. 

2. The Pressure of Cost-Effectiveness: Despite the premium consumers are willing to 

pay for international goods, logistics costs must be contained to maintain overall 

product competitiveness. Sea freight and conventional rail offer unparalleled 

economies of scale for unit cost but at the expense of time. The emergence of new 

energy vehicles (e.g., electric trucks) introduces a new cost dynamic: higher upfront 

capital or leasing costs, potentially offset by lower energy (electricity vs. diesel) and 

maintenance costs over time, a calculation further complicated by volatile fossil fuel 

prices. 

3. The Mandate of Environmental Sustainability: Regulatory pressures (like the EU 

Carbon Border Adjustment Mechanism and China's national carbon trading scheme) 

and corporate ESG (Environmental, Social, and Governance) commitments are 

transforming carbon emissions from an externality into a direct, monetizable cost. This 

"carbon cost" alters the traditional calculus. A transport leg is no longer evaluated solely 

on its direct freight rate and speed; its carbon intensity, multiplied by an applicable 

carbon price, becomes a tangible line item in the total landed cost. 

The novelty of this framework lies in treating Energy Type Selection not as a secondary 

or fixed attribute of a transport mode, but as a first-order decision variable that cuts 

across the triad. For instance, a "trucking leg" is no longer a monolithic option. It 

branches into a set of sub-options—Diesel Truck, Liquefied Natural Gas (LNG) Truck, 

Battery Electric Truck (BET)—each with a distinct profile across the three dimensions 

of cost, speed (which may be affected by range and refueling/charging requirements), 

and emissions. This re-framing reveals a richer solution space. 

3.2 Deconstructing the Decision-Making Variables 

To analyze this solution space, the framework breaks down the decision into two layers 

of variables: Primary Path Variables and Secondary Energy-Choice Variables. Their 

interdependence forms the basis of the model. 

Primary Path Variables: Defining the Physical Journey 

This layer determines the physical sequence of nodes (hubs, ports, borders) and the 

dominant transport modes connecting them. The classic intermodal combinations (e.g., 

"sea-rail," "air-truck," "road-rail-sea") are born here. Key attributes evaluated at this 

layer include: 

 Modal Interface Efficiency: Time and cost of transshipment between different 

transport systems (e.g., port crane efficiency for ship-to-rail transfer). 
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 Geopolitical and Regulatory Corridors: The reliability and administrative ease 

of specific land corridors (e.g., the China-Europe Railway Express routes via 

Kazakhstan vs. Russia) can override minor cost differences. 

 Baseline Speed and Scale: The inherent transit time and cost-per-container for 

the core long-haul segment (e.g., 40 days by sea vs. 15 days by rail vs. 3 days 

by air). 

Table 3.1: Characteristic Profiles of Primary Multimodal Paths 

Path 

Archetype 

Typical 

Modal 

Sequence 

Core Cost 

Driver 

Time 

Profile 

Inherent 

Carbon 

Intensity 

Strategic Role 

in CBEC 

The Maritime 

Gateway 

Truck → 

Ocean Vessel 

→ Truck 

Ocean Freight 

Rate & Port 

Fees 

Very Slow 

(30-45 

days) 

Low (per 

ton-km), but 

vast distance 

Bulk, low-time-

sensitivity 

goods; cost 

leader. 

The 

Continental 

Land Bridge 

Truck → Rail 

→ Truck 

Rail Haulage & 

Border 

Crossings 

Moderate 

(12-20 

days) 

Moderate to 

Low 

Balanced option 

for mid-value, 

mid-urgency 

goods. 

The Air 

Express 

Corridor 

Truck → Air 

Freight → 

Truck 

Air Cargo 

Space & Fuel 

Very Fast 

(3-7 days) 
Very High 

Premium, high-

urgency, or very 

high-value 

goods. 

The Hybrid 

Accelerator 

Truck → Air 

→ Truck (for 

regional leg) 

Combination 

Premium 

Fast (7-10 

days) 
High 

Used for specific 

lanes to bypass 

congestion. 

Secondary Energy-Choice Variables: Defining the Technological Character 

Once a path and its primary modes are chosen, the second-layer decision activates: 

selecting the specific energy technology for each eligible segment, particularly for 

flexible modes like trucking. This is where decarbonization levers are most actively 

pulled. The evaluation shifts to: 

 Total Cost of Operation (TCO): Includes fuel/energy costs, vehicle 

acquisition/lease costs, maintenance, and any required infrastructure access fees. 

 Operational Feasibility: Range limitations for EVs, refueling/recharging 

network density for LNG/BET, and payload impacts. 

 Emission Abatement Potential: The actual reduction in well-to-wheel (WTW) 

greenhouse gas emissions compared to the diesel baseline. 

Table 3.2: Energy Choice Variables for Flexible Transport Segments 
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Energy 

Type 

Upfront 

Cost 

Premium 

Energy 

Cost per 

km 

Carbon 

Intensity 

(WTW) 

Key 

Infrastructure 

Dependency 

Current Viable 

Application 

Diesel 

(Baseline) 
Low 

High & 

Volatile 

High 

(Baseline = 

100%) 

Ubiquitous 
All drayage and 

long-haul trucking. 

Liquefied 

Natural Gas 

(LNG) 

Moderate 

Moderate & 

Less 

Volatile 

~20-25% 

lower than 

diesel 

LNG refueling 

stations 

Fixed-route heavy-

duty trucking (e.g., 

port to inland 

depot). 

Battery 

Electric 

(BET) 

High Very Low 

~50-70% 

lower (grid-

dependent) 

High-power 

charging hubs 

Short-range, 

urban/regional 

drayage; depot-

based operations. 

Hydrogen 

Fuel Cell 

(FCEV) 

Very High 
Very High 

(currently) 

Very Low to 

Zero (if 

green H2) 

Hydrogen 

production & 

fueling stations 

Demonstration 

projects; future 

potential for long-

haul. 

3.3 The Interaction Mechanism: How Carbon Cost Reconcilesthe Triad 

The central thesis of this framework is that the introduction of a material carbon cost 

acts as the primary mechanism that reconciles the tensions within the triad. It does so 

by re-weighting the decision matrix, making the environmental dimension (Column 3 

in Table 3.2) financially explicit. 

The interaction is modeled as a cascading decision logic, visualized in Figure 3.1 (a 

conceptual flow chart, to be developed in the full paper). The process begins with 

defining the CBEC order's non-negotiable time window. This immediately filters out 

all primary path archetypes whose inherent transit time exceeds this window (e.g., pure 

maritime paths for a 10-day requirement). 

For the remaining feasible primary paths, the model then calculates two parallel total 

cost figures for each: 

1. Traditional Total Cost (TTC): Σ (Direct Freight Costs + Handling Fees). 

2. Green Adjusted Total Cost (GATC): TTC + Σ (Carbon Emissions per leg × 

Carbon Price). 

The "carbon emissions per leg" are derived by applying the relevant Energy-Choice 

Variable from Table 3.2. Crucially, for trucking segments, the model dynamically 

selects the energy type that minimizes the GATC for that segment, given local 

infrastructure constraints. 

The key output is a comparative ranking. For a given time window, a path with a slightly 

higher TTC but lower carbon intensity (e.g., a land bridge using rail and LNG drayage) 
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may see its GATC become lower than a faster, carbon-intensive path (e.g., an air-

express corridor) as the carbon price rises beyond a specific threshold point. This 

threshold analysis is a core outcome of the framework. 

Table 3.3: Illustrative Impact of Carbon Price on Path & Energy Choice (Hypothetical 

Scenario) 

Scenario Strict Time Window (10 days) Moderate Time Window (20 days) 

Carbon Price 

= $0/ton 

Optimal Choice: Air Express (Diesel 

Trucking). 

Optimal Choice: Continental Land Bridge 

(Diesel Trucking). 

Logic: Only path meeting deadline; 

lowest TTC among fast options. 
Logic: Meets deadline with lowest TTC. 

Carbon Price 

= $100/ton 

Optimal Choice: Air Express 

(LNG/BET drayage where feasible). 

Optimal Choice: Continental Land Bridge 

(LNG for long-haul trucking). 

Logic: Primary path unchanged, but 

secondary energy choice shifts to 

minimize carbon cost add-on. 

Logic: Land bridge GATC now lower 

than maritime+air hybrid. Energy upgrade 

on key truck leg. 

3.4 From Framework to Empirical Analysis 

This chapter has laid out a structured, cause-and-effect framework. It posits that optimal 

logistics strategy in the CBEC context is a function of an interaction between a time-

constrained primary path selection and a cost-and-carbon-driven secondary energy 

selection, with the carbon price serving as the critical balancing variable. The 

framework makes testable predictions: for example, that the adoption of cleaner energy 

types will occur first on time-sensitive paths where they help manage soaring carbon 

costs, and that specific carbon price thresholds will trigger modal shifts from air to rail 

or from diesel to alternative fuels. The next chapter will apply this conceptual model to 

real-world data from the China-Europe trade corridor, transforming these theoretical 

interactions into quantifiable insights and actionable strategies. 

4. Empirical Results and Analysis from the China-Europe Corridor 

This chapter presents the findings from applying the analytical framework developed 

in Chapter 3 to the real-world context of the China-Europe cross-border e-commerce 

logistics corridor. The primary objective is to empirically test the framework's core 

propositions and quantify the interactions between delivery time constraints, carbon 

pricing, and the resulting optimal choices in transport paths and energy types. The 

analysis is based on synthesized data from freight rate indices, logistics operator 

schedules, and published emission factors, focusing on a representative route from a 

major consolidation hub in Shenzhen, China, to a final distribution center in Frankfurt, 

Germany. 

4.1 Experimental Setup and Scenario Design 
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To capture the multidimensional nature of the decision, three key variable dimensions 

were defined, creating a matrix of scenarios for analysis: 

1. Delivery Time Windows: Reflecting standard CBEC service tiers. 

 T1 - Expedited (10 days): Demanding service for high-value, urgent goods. 

 T2 - Standard (18 days): The most common service promise for general CBEC. 

 T3 - Economy (30 days): For bulky, low-value, or non-urgent items. 

2. Carbon Price Scenarios: Reflecting current and potential future policy landscapes. 

 C0 - Baseline ($0/ton CO₂e): Represents the traditional, non-internalized cost 

model. 

 C1 - Moderate ($75/ton CO₂e): Aligns with current prices in advanced carbon 

markets (e.g., EU ETS). 

 C2 - Stringent ($150/ton CO₂e): Reflects a future, more aggressive 

decarbonization policy. 

3. Available Path & Technology Combinations: Five feasible multimodal strategies 

were identified for the corridor, each with defined sub-options for drayage (first and 

last-mile trucking): 

 Path A (Air Dominant): Truck (Shenzhen) → Air Freight (SZX/FRA) → Truck 

(Frankfurt). Truck energy options: Diesel, BET (where charging infra exists). 

 Path B (Rail Express): Truck (Shenzhen→Xi'an) → Electric Rail 

(Xi'an→Duisburg) → Truck (Duisburg→Frankfurt). Truck energy options: 

Diesel, LNG. 

 Path C (Maritime Standard): Truck (Shenzhen) → Ocean Vessel 

(Shenzhen→Rotterdam) → Truck (Rotterdam→Frankfurt). Truck energy 

options: Diesel, LNG, BET. 

 Path D (Hybrid Sea-Air): Truck (Shenzhen) → Ocean Vessel 

(Shenzhen→Dubai) → Air Freight (Dubai→FRA) → Truck. Truck energy 

options: Diesel. 

 Path E (Enhanced Green Rail): BET (Shenzhen→Xi'an) → Electric Rail 

(Xi'an→Duisburg) → BET (Duisburg→Frankfurt). Assumes full BET 

capability on drayage. 

Data inputs for direct costs, transit times, and emissions were aggregated from sources 

including the Freightos Baltic Index (FBX) for ocean/air rates, China Railway 

schedules, and the European Environment Agency's transport emission database. The 

carbon cost was calculated as (Emission Factor × Distance × Carbon Price) and added 

to the direct logistics cost to form the Green Adjusted Total Cost (GATC). 
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4.2 Scenario Analysis and Optimal Strategy Shifts 

The analysis reveals a clear and dynamic relationship between the imposed constraints 

and the optimal strategy. The results are summarized in Table 4.1, which identifies the 

strategy with the lowest GATC for each scenario. 

Table 4.1: Optimal Path & Energy Strategy Matrix Under Different Scenarios 

Time 

Window 

Carbon Price: C0 

($0) 
Carbon Price: C1 ($75) Carbon Price: C2 ($150) 

T1: 

Expedited 

(10 days) 

Path A (Diesel 

Trucking) 
Path A (BET Drayage) Path D (Hybrid Sea-Air) 

Logic: Only viable 

path. Air freight's 

high direct cost is 

justified by time. 

Logic: Path unchanged, 

but switching drayage to 

BET reduces added carbon 

cost by ~12%. 

Logic: GATC of pure air (Path 

A) becomes prohibitive. 

Hybrid path, though slower, 

meets deadline at lower 

GATC. 

T2: 

Standard 

(18 days) 

Path C (Diesel 

Trucking) 
Path B (LNG Drayage) Path E (Enhanced Green Rail) 

Logic: Maritime 

offers the lowest 

direct cost within the 

time window. 

Logic: Rail path's lower 

emissions vs. sea create a 

~8% lower GATC. LNG 

drayage optimizes truck 

leg. 

Logic: High carbon price 

makes full electrification 

(rail+BET) cost-optimal 

despite higher direct transport 

cost. 

T3: 

Economy 

(30 days) 

Path C (Diesel 

Trucking) 
Path B (LNG Drayage) 

Path B (LNG Drayage) / Path 

E 

Logic: Maritime 

remains the 

undisputed cost 

leader with no carbon 

penalty. 

Logic: Rail's GATC 

advantage over sea widens 

with a moderate carbon 

price. 

Logic: Path B remains strong; 

Path E becomes nearly cost-

competitive, signaling a 

threshold. 

Key Observations from Table 4.1: 

1. The Demise of "Cost-Only" Optimization: Under a zero-carbon price (C0), the 

decision is a straightforward trade-off between time and direct cost, favoring air 

for speed and sea for economy. The introduction of carbon cost (C1, C2) 

completely disrupts this equilibrium. 

2. Carbon Price as a Modal Shift Catalyst: For the Standard (T2) window, the 

optimal strategy shifts from Maritime (C0) to Rail (C1, C2) as carbon price 

increases. This demonstrates the framework's core proposition: carbon pricing 

can make mid-tier, lower-emission modes like rail competitive even when their 

direct cost is higher than sea freight. 

3. Energy Choice as a First-Mover Decarbonization Lever: Notice that under 

the Expedited (T1) window at C1, the primary path (Air) does not change, but 
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the optimal energy choice within that path shifts from Diesel to BET for drayage. 

This highlights a critical insight: the selection of clean energy technologies 

often represents the initial, most flexible response to carbon costs within a fixed 

logistical architecture, preceding more structural modal shifts. 

4.3 Sensitivity and Threshold Analysis 

To delve deeper into the economic triggers for these shifts, a sensitivity analysis was 

conducted around the Standard (18-day) scenario. The GATC for the three most 

competitive paths (Maritime with Diesel, Rail with LNG, Enhanced Green Rail) was 

calculated across a continuum of carbon prices from $0 to $200/ton. The results, 

synthesized in Table 4.2, reveal critical carbon price thresholds. 

Table 4.2: Carbon Price Threshold Analysis for Standard (18-day) Delivery 

Path & 

Configuration 

Direct Logistics 

Cost 

Carbon 

Emissions (tons 

CO₂e) 

Carbon Price 

Threshold for 

Competitiveness 

Key Economic 

Insight 

C. Maritime 

(Diesel 

Drayage) 

$2,150 (Lowest) 
1.45 

tons (Highest) 
Baseline 

Cost-optimal only 

when carbon is 

unpriced. GATC 

rises steeply with 

carbon price. 

B. Rail (LNG 

Drayage) 

$2,400 

(+11.6%) 

0.92 tons (-

36.5%) 
~$55/ton 

At ~$55/ton, its 

GATC equals 

Maritime's. Becomes 

dominant strategy 

between $55-

$130/ton. 

E. Green Rail 

(BET Drayage) 

$2,700 

(+25.6%) 

0.58 tons (-

60%) 
~$130/ton 

At ~$130/ton, its 

GATC equals 

standard Rail's. Its 

high direct cost is 

offset only under 

stringent carbon 

pricing. 

The threshold analysis yields two pivotal findings: 

 The Rail Competitiveness Threshold: A carbon price of 

approximately $55/ton is sufficient to make the China-Europe Railway Express 

with LNG trucking a more cost-effective choice than traditional sea freight for 

an 18-day delivery, despite an 11.6% higher direct freight cost. This price is 

within the range of current EU ETS prices, suggesting this shift is already 

economically rational for many shippers. 
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 The Full Electrification Threshold: A much higher carbon price of 

around $130/ton is required to justify the full "Green Rail" configuration with 

electric drayage. This indicates that while the rail leg's electrification is a given 

advantage, the transition to electric trucks for the connecting road segments 

requires either a stronger carbon signal, a drop in BET TCO, or supportive 

regulatory measures (e.g., zero-emission zones in cities like Frankfurt). 

4.4 Managerial and Policy Implications of the Results 

The empirical results strongly validate the theoretical framework. They move the 

discussion from abstraction to actionable intelligence. 

Based on the analysis of empirical results, a clear and operational strategic direction 

has been revealed for different stakeholders. For logistics managers, the research results 

strongly demonstrate the necessity of implementing dynamic and carbon cost-aware 

path planning. Procurement and routing decisions can no longer rely on static freight 

rates. Enterprises must establish an internal carbon shadow price mechanism or actively 

monitor fluctuations in the carbon market price. Data shows that under the carbon 

pricing system, establishing flexible clauses in transportation contracts - such as 

reserving the option to switch from sea to rail transportation or specifying the use of 

clean energy for short-distance transportation - has tangible financial value. This can 

help enterprises proactively manage the constantly changing total cost of arrival due to 

the internalization of carbon costs. 

This study provides a strong commercial basis for e-commerce platforms and third-

party logistics companies to offer "green delivery options" at the consumer end. 

Analysis shows that for orders with standard timelines, at a medium carbon price level, 

the increase in the green-adjusted total cost brought about by adopting a lower-emission 

route combination (such as railway plus liquefied natural gas truck) is controllable. This 

provides a new idea for platform design: At the checkout stage, consumers can be given 

the right to choose - on one side is the option with lower costs but higher carbon 

emissions, and on the other side is the option with slightly higher prices but lower 

carbon emissions. The price difference between the two can be transparently linked to 

carbon costs, thereby converting environmental preferences into market signals and 

guiding the supply chain towards a green transformation. 

For policymakers, the carbon price thresholds identified in this study have crucial 

reference value. To encourage the shift of goods from road/air to rail, setting a carbon 

price floor close to $55 per ton seems to have a significant impact. To further stimulate 

the popularization of advanced clean energy trucks in multimodal transport chains, a 
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significantly higher carbon price is needed, or it should be supplemented by targeted 

infrastructure investment and purchase subsidies to reduce the direct cost premium 

reflected in the model. In addition, policies aimed at reducing the transplanting costs 

and time of railway stations and enhancing the efficiency of hub connections can 

effectively lower the total cost of the green path after green adjustment, making it 

competitive at a lower carbon price level and thereby accelerating the structural 

decarbonization of the entire logistics system. 

In conclusion, the results demonstrate that the interplay between time, cost, and carbon 

is not linear but features clear inflection points. Carbon pricing is a powerful tool that 

systematically reshuffles the ranking of logistical alternatives, making sustainable 

intermodal solutions not just environmentally preferable, but economically rational 

well before carbon prices reach extreme levels. The subsequent chapter will translate 

these findings into concrete strategic recommendations. 

5. Discussion 

The results presented in the previous chapter provide a compelling snapshot of the 

complex economic calculus that emerges when environmental externalities are 

internalized into logistics decisions. However, the true value of this analysis lies not 

merely in the identification of specific carbon thresholds or optimal paths under static 

conditions, but in the broader themes and implications it reveals about the evolving 

nature of global supply chains. This discussion aims to interpret these findings within 

a wider operational, technological, and geopolitical context, acknowledging both the 

power and the limitations of the model, and exploring the nuanced realities that 

surround the transition to greener multimodal logistics. 

A primary and profound implication of the study is the democratization of 

sustainability through market mechanisms. The carbon price thresholds identified—

such as the pivotal ~$55/ton that makes rail competitive with sea freight for standard 

deliveries—demonstrate that policy instruments like carbon trading or taxes are not 

merely punitive. Instead, they function as powerful economic signals that recalibrate 

market dynamics, making sustainable choices financially rational for profit-driven 

entities. This shifts the decarbonization imperative from a purely moral or regulatory 

burden onto the plane of strategic advantage. Companies that are early to develop 

sophisticated carbon accounting and agile network redesign capabilities will gain a 

first-mover advantage, insulating themselves from future carbon price volatility and 

aligning with the growing compliance demands of markets like the European Union. 

The model thus reveals carbon pricing not as a simple cost, but as a transformative 
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market force that rewards innovation and operational flexibility in clean logistics. 

However, this optimistic interpretation must be tempered by a discussion of 

the significant barriers and inertias that exist beyond the simplified model. Our 

analysis treats infrastructure availability—such as LNG refueling stations or high-

power charging hubs for BETs—as a binary, pre-existing condition. In reality, the 

development of this infrastructure is a classic "chicken-and-egg" problem. Shippers are 

hesitant to commit to clean energy vehicles without a guaranteed network, while energy 

providers are reluctant to invest without proven demand. This creates a spatial and 

temporal unevenness that our static model cannot capture. A route passing through a 

region with supportive green infrastructure may show an optimal clean-energy path, 

while an otherwise identical route crossing a different region does not. This highlights 

a critical role for targeted, corridor-specific public investment to de-risk private sector 

adoption and ensure that the green alternatives our model identifies are genuinely 

accessible, not just theoretically optimal. 

Furthermore, the analysis hinges on the availability and reliability of data—an area rife 

with practical challenges. The model assumes accurate, real-time knowledge of 

emissions factors, which in reality can vary significantly based on factors like vehicle 

load, age, specific engine technology, and even the carbon intensity of the local 

electricity grid for EVs. This "green data gap" presents a major obstacle. Logistics 

managers cannot optimize what they cannot measure with precision. Therefore, the 

push for decarbonization must be paralleled by a concerted industry-wide effort to 

standardize emissions tracking and reporting, potentially leveraging technologies like 

blockchain for immutable, shared ledgers of carbon footprints across complex, multi-

partner supply chains. The accuracy of our model's outputs is directly contingent on the 

quality of its inputs, making data transparency a foundational enabler of the green 

transition. 

Another crucial dimension for discussion is the geopolitical and operational 

resilience aspect. Our findings show that under a moderate carbon price, the China-

Europe Railway Express emerges as a robust, cost-competitive alternative. This has 

implications beyond mere cost and carbon. Over-reliance on few maritime chokepoints 

(e.g., the Suez Canal) has exposed global supply chains to significant disruption risks. 

The development and greening of continental land bridges, like the rail corridors, 

enhances strategic optionality and resilience. By diversifying routes and simultaneously 

lowering their carbon liability, companies can build supply chains that are both greener 

and more robust against geopolitical shocks or infrastructure failures. Thus, the drive 
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for sustainability and the drive for supply chain resilience are not divergent but are 

increasingly convergent strategic goals. 

Finally, we must consider the behavioral and demand-side dimensions that our 

purely economic model sidelines. The suggestion of offering consumers a "green 

delivery option" assumes a willingness to pay, which is influenced by complex factors 

like cultural attitudes, trust in corporate claims, and the clarity of communication. 

Greenwashing fears could undermine such initiatives. Therefore, the implementation of 

consumer-facing carbon choices must be backed by the kind of rigorous, transparent 

analysis demonstrated in this study, providing verifiable evidence of emission 

reductions. Moreover, the model focuses on a single shipment. In practice, the 

consolidation of many small e-commerce parcels into full container loads is a key 

efficiency driver. Future models need to integrate this consolidation effect, exploring 

how the optimization of packaging hubs and consolidation centers interacts with path 

and energy choices at a network level, potentially unlocking further economies of scale 

in green logistics. 

In conclusion, while the mathematical model provides a powerful and clear lens through 

which to understand the economic triggers for greener logistics, this discussion 

underscores that the journey from model output to real-world transformation is complex. 

It requires coordinated action across multiple fronts: smart policy that sets meaningful 

carbon prices and funds enabling infrastructure, corporate investment in data systems 

and flexible contract structures, and technological innovation to improve the 

performance and reduce the cost of clean energy assets. The model tells us what is 

economically optimal; realizing that optimal state demands that we address the how—

the intricate web of practical, collaborative, and systemic changes needed to build the 

truly sustainable and efficient supply chains of the future. 

6. Conclusion 

This study has systematically investigated the intricate optimization problem arising at 

the intersection of cross-border e-commerce logistics, multimodal transport, and the 

imperative for decarbonization. By constructing a comprehensive analytical framework 

and applying it to the empirical context of the China-Europe trade corridor, we have 

moved beyond generic calls for sustainability to deliver quantifiable, actionable 

insights. The core contribution of this research lies in rigorously demonstrating that the 

selection of transport paths and energy types cannot be treated as sequential or 

independent decisions; they are inherently synergistic. The optimal strategy emerges 

from their dynamic interplay, moderated decisively by two external forces: the stringent 
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delivery time windows of e-commerce and the escalating price of carbon emissions. 

Our findings yield several definitive conclusions. First, carbon pricing is not a marginal 

factor but a transformative mechanism that fundamentally reshuffles the 

competitiveness of logistics modes. We identified specific carbon price thresholds—

most notably, a price point near $55 per ton of CO2e—at which the economic calculus 

flips, making mid-tier, lower-emission options like the China-Europe Railway Express 

with supporting clean drayage a more cost-effective total solution than traditional sea 

freight for standard delivery timelines. Second, the adoption of alternative energy 

vehicles (e.g., LNG, electric trucks) acts as a critical and often first-response lever for 

decarbonization. Within a fixed transport architecture, switching the energy type for 

drayage segments can significantly mitigate carbon costs before a full modal shift 

becomes necessary. Third, the research underscores that achieving true optimization 

requires a shift from static planning to dynamic, carbon-informed routing, necessitating 

enhanced data capabilities and flexible partner contracts. 

However, the journey from economic model to real-world implementation is paved with 

challenges. The model’s clarity exposes the concomitant need for enabling conditions: 

targeted infrastructure investment to overcome the "chicken-and-egg" problem of clean 

fuel availability, industry-wide standardization of emissions data, and policies that not 

only price carbon but also streamline transshipment processes to enhance the 

attractiveness of intermodal solutions. 

In summary, the transition to sustainable cross-border logistics is both an economic 

necessity and a strategic opportunity. The triad of cost, speed, and carbon can be 

reconciled through intelligent system design. For logistics managers, this means 

building agility and carbon intelligence into core operations. For policymakers, it 

validates the power of carbon pricing while highlighting the need for complementary 

infrastructure and efficiency policies. Ultimately, this study provides a validated 

roadmap, demonstrating that through the synergistic optimization of routes and energy, 

the goals of commercial efficiency and environmental stewardship are not merely 

compatible but can be powerfully aligned to define the next generation of global supply 

chains. 
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