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Abstract

Objective: This study aims to develop an integrated optimization framework for cross-
border e-commerce (CBEC) logistics that simultaneously addresses multimodal
transport route planning and energy type selection. It seeks to analyze how carbon
pricing, delivery time constraints, and technological choices interact to shape cost-
effective and sustainable supply chain strategies.

Methods: A multi-objective analytical framework is proposed, incorporating primary

path variables and secondary energy-choice variables. The framework is applied
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empirically to the China-Europe trade corridor using scenario analysis based on real-
world data, including freight rates, transit times, and emission factors. Carbon cost
internalization is modeled to compute Green Adjusted Total Cost (GATC), and
sensitivity analysis is conducted to identify critical carbon price thresholds.

Results: The analysis reveals that carbon pricing significantly reshuffles the
competitiveness of logistics modes. At a carbon price of approximately $55/ton, the
China-Europe Railway Express with LNG drayage becomes more cost-effective than
traditional sea freight for standard 18-day deliveries. For expedited deliveries, energy
switching within fixed routes emerges as an initial decarbonization lever. Clear carbon
price thresholds trigger modal shifts and energy technology adoption, demonstrating
that sustainable options become economically rational under realistic carbon pricing
scenarios.

Conclusion: The synergistic optimization of transport paths and energy choices is
essential for achieving sustainable and efficient CBEC logistics. Carbon pricing acts as
a transformative mechanism that aligns environmental and economic objectives, while
flexible energy selection within multimodal networks offers a practical pathway for
decarbonization. The study underscores the need for dynamic, carbon-aware routing,
supportive infrastructure investments, and policy frameworks that incentivize green
transitions in global supply chains.

Acknowledgements: The author declares that there is no conflict of interest.
Keywords: cross-border e-commerce; multimodal transport; energy type selection;
carbon pricing; sustainability; logistics optimization; China-Europe corridor

1. Introduction

In the era of deepening global economic integration and digital transformation, the
logistics and supply chain sectors are undergoing profound and structural changes. This
evolution is particularly pronounced in two burgeoning and increasingly interconnected
domains: the international trade of energy commodities and the dynamic field of cross-
border e-commerce (CBEC). The traditional models governing these sectors are being
challenged by demands for greater efficiency, transparency, sustainability, and
resilience. As Zhang (2021) points out, optimizing the logistics distribution network is
a cornerstone for enhancing the operational performance of modern trade systems.
Concurrently, the imperative for sustainable development has thrust environmental
considerations, notably carbon emissions, to the forefront of logistics planning.
Integrating these multifaceted objectives—cost, speed, reliability, and ecological

impact—presents a complex optimization puzzle that traditional linear approaches are



ill-equipped to solve.

The rise of cross-border e-commerce has fundamentally reshaped consumer
expectations and logistics requirements. Characterized by small batch sizes, high
frequency, and stringent delivery timelines, CBEC demands a logistics infrastructure
that is both agile and robust. As highlighted in the literature (He, Wu, & Choi, 2021;
Liu et al, 2022), the associated logistics costs and risks represent a significant
bottleneck for the sector's growth. To navigate the vast geographical spans involved,
multimodal transportation—seamlessly integrating air, sea, rail, and road segments—
has emerged as the dominant paradigm. However, optimizing such multimodal
networks is not merely about selecting the cheapest or fastest individual leg. It involves
a holistic consideration of the entire chain, from international long-haul freight to the
critical "last-mile" delivery, where innovations like truck-drone collaborations are
gaining traction (Dorling et al., 2017; Karak & Abdelghany, 2019). The work of Xu, Di
Nardo, and Yin (2024) underscores this complexity by constructing an integrated model
that spans from air cargo transport to final delivery via vehicles and drones, aiming to
minimize cost and carbon emissions while maximizing customer satisfaction.

Parallel to the logistics revolution in CBEC, the global energy trade is itself
experiencing a digital and green transformation. The concept of "energy cross-border
e-commerce" represents the convergence of information and communication
technologies (ICT) with energy systems, aiming to create more flexible, efficient, and
transparent markets for electricity and other energy commodities (as discussed in the
first provided paper). This paradigm seeks to optimize the allocation of energy
resources across borders, much like goods in CBEC, addressing issues such as the
integration of intermittent renewable sources and improving overall system efficiency.
The optimization challenges here are similarly multidimensional, often requiring the
balancing of technical constraints, market dynamics, and policy objectives.

At the heart of addressing these complex, multi-objective optimization problems in both
CBEC logistics and energy trade lie advanced computational intelligence algorithms.
Traditional single-objective solvers fall short when facing conflicting goals such as
minimizing cost versus minimizing carbon footprint, or maximizing delivery speed
versus ensuring vehicle load efficiency. Consequently, evolutionary multi-objective
optimization algorithms (EMO) like the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and decomposition-based approaches such as the Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) have become
indispensable tools (Wang, Li, Li, & Zhang, 2024). More recently, novel swarm



intelligence algorithms, including the Sand Cat Swarm Optimization (SCSO) algorithm
proposed by Seyyedabbasi and Kiani (2023), have demonstrated superior performance
in navigating complex solution spaces and avoiding local optima, offering promising
avenues for developing high-performance decision-support optimizers.

This paper is situated at the intersection of these critical trends. We posit that the future
efficiency and sustainability of both physical goods logistics (exemplified by CBEC)
and digital energy commodity trade depend on sophisticated, integrated optimization
models powered by advanced computational intelligence. While existing research has
made significant strides—such as optimizing specific legs of the journey (Fan et al.,
2020; Zheng et al., 2023) or focusing solely on cost or emissions—a gap remains in
holistically modeling the synergistic optimization of transportation paths and energy
technology choices under the dual pressures of e-commerce time constraints and carbon
pricing mechanisms. Therefore, this study aims to bridge this gap. It seeks to develop a
comprehensive analytical framework and optimization model that not only plans
multimodal routes but also explicitly selects the energy type (e.g., diesel, LNG, electric)
for each transport segment, internalizing carbon costs to guide decisions towards truly
sustainable and economically viable supply chains. By doing so, this research aims to
provide actionable insights for logistics managers, e-commerce platforms, energy
traders, and policymakers navigating the decarbonized future of global trade.

2. Literature Review

2.1 Optimization in Cross-Border E-commerce Logistics

The optimization of logistics networks for cross-border e-commerce has attracted
considerable scholarly attention, driven by the sector's explosive growth and unique
operational challenges. Early and fundamental work in this area often treated logistics
as a variant of the classic Vehicle Routing Problem (VRP). However, the CBEC context
introduces layers of complexity, including international border crossings, multimodal
transport coordination, and intense pressure on delivery times. Liu et al. (2022) provide
a systematic review of these challenges in the Chinese context, identifying logistics cost
and risk as primary developmental bottlenecks. In response, researchers have developed
increasingly sophisticated models.

A significant stream of research focuses on multimodal integration. Fan et al. (2020)
proposed an intelligent logistics integration model separating internal and external
transportation, highlighting the efficiency gains from coordinated planning. Chen, Peng,
Lian, and Yang (2023) specifically optimized a Japan-Europe multimodal corridor,

considering cost and time trade-offs. These studies affirm that breaking away from



unimodal planning is essential for CBEC. Furthermore, the last-mile delivery segment,
critical for customer satisfaction, has evolved beyond traditional trucks. The
collaboration between trucks and drones has been extensively studied as a means to
boost efficiency. Dorling et al. (2017) framed the vehicle-drone routing problem, while
Karak and Abdelghany (2019) explored it for pick-up and delivery services. Recent
work by Xu et al. (2024) integrates this last-mile model with preceding long-haul air
freight, presenting a more complete picture of the CBEC logistics chain.

The objectives of optimization have also expanded from a singular focus on
cost. Customer satisfaction, often modeled through time window adherence, is now a
common objective. Zheng et al. (2023) employed fuzzy clustering to analyze e-
commerce customer demands for logistics distribution, incorporating satisfaction into
their optimization model. Similarly, Xu et al. (2024) use fuzzy theory to model
consumer satisfaction based on delivery time, integrating it directly into their multi-
objective function. Concurrently, the environmental dimension has become
unavoidable. Cheah and Huang (2021) conducted a comparative carbon footprint
assessment of different CBEC shipping options, providing crucial data for emission-
aware models. Zhang, Tang, Zhang, and Gou (2023) explicitly included carbon
emission costs in optimizing distribution routes for chain supermarkets. Xu et al. (2024)
incorporate carbon emissions from both air and road transport as a core objective,
reflecting the industry's move towards triple-bottom-line optimization (cost, service,
environment).

2.2 Algorithmic Approaches for Complex Logistics Optimization

Solving the high-dimensional, constrained, and multi-objective problems inherent in
modern logistics requires advanced algorithmic strategies. Traditional exact methods
are often computationally prohibitive for real-world-scale problems, leading to the
dominance of meta-heuristic and swarm intelligence algorithms.

Evolutionary Multi-Objective Optimization (EMO) algorithms have a long history in
this field. Algorithms like NSGA-II, which uses non-dominated sorting and crowding
distance, are benchmark tools for generating Pareto-optimal solution sets (Wang et al.,
2024). The MOEA/D framework, which decomposes a multi-objective problem into
several single-objective sub-problems, has also proven highly effective and is
frequently used as a basis for further improvements, as seen in the analysis of
algorithms like MOEA/D-AW in the context of energy trade optimization. These
algorithms are prized for their ability to handle non-linear, non-convex problem spaces

and provide a set of trade-off solutions for decision-makers.



More recently, novel swarm intelligence algorithms have shown remarkable
performance. The Sand Cat Swarm Optimization (SCSO) algorithm, inspired by the
hunting behavior of sand cats, is a notable newcomer. Seyyedabbasi and Kiani (2023)
demonstrated its efficacy in global optimization problems. Xu et al. (2024) adopted and
improved the SCSO algorithm (using chaotic initialization, elite retention, and
nonlinear weights) to solve their integrated CBEC logistics model, reporting superior
results compared to established algorithms like the Bat Algorithm (BA) (Yang, 2010)
and Cuckoo Search Algorithm (CSA) (Caselli et al.,, 2021). Other nature-inspired
algorithms like Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO) continue to be actively applied and hybridized, as seen in UAV path planning
research (Wang, Zhang, Gao, Zheng, & Wang, 2023; Aljuaid, Kurdi, & Youcef-Toumi,
2023).

2.3 Optimization in Energy Trade and System Planning

While distinct from physical goods logistics, the optimization of energy systems and
cross-border energy trade presents analogous modeling challenges. The provided paper
on "Global Energy Trade Cross Border E-commerce Optimization Model"
conceptualizes an intelligent, platform-based energy trading ecosystem. This mirrors
the digital marketplace model of CBEC but applies it to flows of electricity and other
energy forms. The optimization challenges involve balancing supply and demand
across a network, integrating distributed and renewable sources, and ensuring system
stability—all under technical and economic constraints.

The literature within this domain heavily utilizes multi-objective optimization
algorithms to navigate these trade-offs. The discussion of algorithms like MOEA/D-
US and MOEA/D-AW for solving test functions (e.g., WFG1-WFG9) underscores the
field's reliance on advanced EMO techniques to find Pareto-optimal allocations of
energy resources. The goal is to move beyond single-metric optimization (e.g., lowest
cost) to solutions that simultaneously consider efficiency, reliability, equity, and
environmental impact. This parallel development in energy informatics reinforces the
central thesis of our study: that the future of complex, networked systems—whether
transporting parcels or electrons—depends on sophisticated, multi-criteria decision-
support tools powered by cutting-edge optimization algorithms.

2.4 Synthesis and Identified Research Gap

The reviewed literature reveals two vibrant, parallel streams of research: one advancing
multimodal, multi-objective logistics optimization for CBEC, and another developing

intelligent optimization frameworks for energy system and trade management. Both



streams increasingly emphasize environmental sustainability and leverage advanced
computational intelligence algorithms. However, a critical gap persists at their
intersection. Existing CBEC logistics models, even those incorporating carbon
emissions, typically treat the energy type (e.g., fuel choice for trucks or ships) as a fixed
parameter generating a given emission factor, not as a decision variable. Conversely,
energy system models focus on the commodity being traded (energy itself) rather than
the logistics of physical goods.

This study aims to bridge this gap. We integrate the decision of transport energy
technology selection (diesel vs. LNG vs. electric) directly into the multimodal path
optimization problem for CBEC logistics. This creates a truly synergistic model where
the choice of route and the choice of propulsion technology are co-optimized, with
carbon costs explicitly internalized. This approach draws inspiration from the multi-
objective, system-wide optimization philosophy prevalent in both fields but applies it
to a novel and pressing problem: decarbonizing the international physical supply chains
that underpin the global e-commerce economy. By doing so, we respond to the call for
more comprehensive and realistic models that can guide the transition to sustainable
and resilient trade networks.

3. Analytical Framework for Integrated Path and Energy Strategy

This chapter presents the core analytical framework developed to investigate the
synergistic optimization of transport routes and energy choices within cross-border e-
commerce logistics. The goal is to move beyond descriptive analysis and establish a
structured, causal model that explains how and under what conditions the selection of
specific transportation paths and fuel technologies interact to shape overall logistical
performance, cost, and environmental footprint. This framework is designed not as a
complex, black-box mathematical algorithm for immediate operational scheduling, but
as a strategic decision-support tool. It clarifies the critical trade-offs and leverage points
that managers and policymakers must consider when designing resilient and sustainable
international supply chains in the era of decarbonization.

3.1 The Core Triad of Strategic Tensions

The fundamental challenge lies in balancing three interconnected, and often competing,
strategic objectives, forming the central "Triad of Tensions" for CBEC multimodal
logistics:

1. The Imperative of Speed and Reliability: CBEC's direct-to-consumer model makes
delivery time a primary competitive differentiator. A "time window" is not merely a soft

target but a hard constraint linked to platform seller performance metrics, customer



satisfaction, and the risk of returns. This speed imperative inherently favors modes like
air freight and premium road services, which are typically the most carbon-intensive.
2. The Pressure of Cost-Effectiveness: Despite the premium consumers are willing to
pay for international goods, logistics costs must be contained to maintain overall
product competitiveness. Sea freight and conventional rail offer unparalleled
economies of scale for unit cost but at the expense of time. The emergence of new
energy vehicles (e.g., electric trucks) introduces a new cost dynamic: higher upfront
capital or leasing costs, potentially offset by lower energy (electricity vs. diesel) and
maintenance costs over time, a calculation further complicated by volatile fossil fuel
prices.
3. The Mandate of Environmental Sustainability: Regulatory pressures (like the EU
Carbon Border Adjustment Mechanism and China's national carbon trading scheme)
and corporate ESG (Environmental, Social, and Governance) commitments are
transforming carbon emissions from an externality into a direct, monetizable cost. This
"carbon cost" alters the traditional calculus. A transport leg is no longer evaluated solely
on its direct freight rate and speed; its carbon intensity, multiplied by an applicable
carbon price, becomes a tangible line item in the total landed cost.
The novelty of this framework lies in treating Energy Type Selection not as a secondary
or fixed attribute of a transport mode, but as a first-order decision variable that cuts
across the triad. For instance, a "trucking leg" is no longer a monolithic option. It
branches into a set of sub-options—Diesel Truck, Liquefied Natural Gas (LNG) Truck,
Battery Electric Truck (BET)—each with a distinct profile across the three dimensions
of cost, speed (which may be affected by range and refueling/charging requirements),
and emissions. This re-framing reveals a richer solution space.
3.2 Deconstructing the Decision-Making Variables
To analyze this solution space, the framework breaks down the decision into two layers
of variables: Primary Path Variables and Secondary Energy-Choice Variables. Their
interdependence forms the basis of the model.
Primary Path Variables: Defining the Physical Journey
This layer determines the physical sequence of nodes (hubs, ports, borders) and the
dominant transport modes connecting them. The classic intermodal combinations (e.g.,
"sea-rail," "air-truck," "road-rail-sea") are born here. Key attributes evaluated at this
layer include:

e Modal Interface Efficiency: Time and cost of transshipment between different

transport systems (e.g., port crane efficiency for ship-to-rail transfer).



Geopolitical and Regulatory Corridors: The reliability and administrative ease
of specific land corridors (e.g., the China-Europe Railway Express routes via
Kazakhstan vs. Russia) can override minor cost differences.

Baseline Speed and Scale: The inherent transit time and cost-per-container for

the core long-haul segment (e.g., 40 days by sea vs. 15 days by rail vs. 3 days

by air).
Table 3.1: Characteristic Profiles of Primary Multimodal Paths
Typical . Inherent .
Path Core Cost Time Strategic Role
Modal . . Carbon .
Archetype Driver Profile . in CBEC
Sequence Intensity
. Bulk, low-time-
. Truck — Ocean Freight | Very Slow Low (per .
The Maritime sensitivity
Ocean Vessel Rate & Port (30-45 ton-km), but
Gateway . goods; cost
— Truck Fees days) vast distance
leader.
. Balanced option
The .| Rail Haulage & | Moderate .
. Truck — Rail Moderate to for mid-value,
Continental Truck Border (12-20 L id
. — Trucl . ow mid-urgenc
Land Bridge Crossings days) gency
goods.
. ] Premium, high-
The Air Truck — Air .
] Air Cargo Very Fast . urgency, or very
Express Freight — Very High .
. Space & Fuel (3-7 days) high-value
Corridor Truck
goods.
. Truck — Air L. Used for specific
The Hybrid Combination Fast (7-10 . P
— Truck (for . High lanes to bypass
Accelerator . Premium days) ;
regional leg) congestion.

Secondary Energy-Choice Variables: Defining the Technological Character

Once a path and its primary modes are chosen, the second-layer decision activates:

selecting the specific energy technology for each eligible segment, particularly for

flexible modes like trucking. This is where decarbonization levers are most actively

pulled. The evaluation shifts to:

Total Cost of Operation (TCO): Includes vehicle

acquisition/lease costs, maintenance, and any required infrastructure access fees.

fuel/energy costs,

Operational Feasibility: Range limitations for EVs, refueling/recharging
network density for LNG/BET, and payload impacts.

Emission Abatement Potential: The actual reduction in well-to-wheel (WTW)
greenhouse gas emissions compared to the diesel baseline.

Table 3.2: Energy Choice Variables for Flexible Transport Segments



Upfront Energy Carbon Key

Energy . Current Viable
Cost Cost per Intensity Infrastructure L
Type . Application
Premium km (WTW) Dependency
. ] High
Diesel High & . L All drayage and
. Low . (Baseline = Ubiquitous .
(Baseline) Volatile long-haul trucking.
100%)
) ) Fixed-route heavy-
Liquefied Moderate & ~20-25% . .
LNG refueling duty trucking (e.g.,
Natural Gas | Moderate Less lower than . .
. . stations port to inland
(LNG) Volatile diesel
depot).
Short-range,
Battery ~50-70% . .
) . . High-power urban/regional
Electric High Very Low lower (grid- .
charging hubs drayage; depot-
(BET) dependent) .
based operations.
Demonstration
Hydrogen . Very Low to Hydrogen .
. Very High . . projects; future
Fuel Cell Very High Zero (if production & .
(currently) . . potential for long-
(FCEV) green H2) fueling stations

haul.

3.3 The Interaction Mechanism: How Carbon Cost Reconcilesthe Triad
The central thesis of this framework is that the introduction of a material carbon cost
acts as the primary mechanism that reconciles the tensions within the triad. It does so
by re-weighting the decision matrix, making the environmental dimension (Column 3
in Table 3.2) financially explicit.
The interaction is modeled as a cascading decision logic, visualized in Figure 3.1 (a
conceptual flow chart, to be developed in the full paper). The process begins with
defining the CBEC order's non-negotiable time window. This immediately filters out
all primary path archetypes whose inherent transit time exceeds this window (e.g., pure
maritime paths for a 10-day requirement).
For the remaining feasible primary paths, the model then calculates two parallel total
cost figures for each:

1. Traditional Total Cost (TTC): X (Direct Freight Costs + Handling Fees).

2. Green Adjusted Total Cost (GATC): TTC + X (Carbon Emissions per leg x

Carbon Price).
The "carbon emissions per leg" are derived by applying the relevant Energy-Choice
Variable from Table 3.2. Crucially, for trucking segments, the model dynamically
selects the energy type that minimizes the GATC for that segment, given local
infrastructure constraints.
The key output is a comparative ranking. For a given time window, a path with a slightly
higher TTC but lower carbon intensity (e.g., a land bridge using rail and LNG drayage)
10



may see its GATC become lower than a faster, carbon-intensive path (e.g., an air-
express corridor) as the carbon price rises beyond a specific threshold point. This
threshold analysis is a core outcome of the framework.

Table 3.3: Illustrative Impact of Carbon Price on Path & Energy Choice (Hypothetical

Scenario)
Scenario Strict Time Window (10 days) Moderate Time Window (20 days)
Optimal Choice: Air Express (Diesel | Optimal Choice: Continental Land Bridge
Carbon Price Trucking). (Diesel Trucking).
= $0/ton Logic: Only path meeting deadline; . . .
. Logic: Meets deadline with lowest TTC.
lowest TTC among fast options.
Optimal Choice: Air Express Optimal Choice: Continental Land Bridge
. (LNG/BET drayage where feasible). (LNG for long-haul trucking).
Carbon Price - - - -
_ $100/ton Logic: Primary path unchanged, but Logic: Land bridge GATC now lower
secondary energy choice shifts to than maritime+air hybrid. Energy upgrade
minimize carbon cost add-on. on key truck leg.

3.4 From Framework to Empirical Analysis

This chapter has laid out a structured, cause-and-effect framework. It posits that optimal
logistics strategy in the CBEC context is a function of an interaction between a time-
constrained primary path selection and a cost-and-carbon-driven secondary energy
selection, with the carbon price serving as the critical balancing variable. The
framework makes testable predictions: for example, that the adoption of cleaner energy
types will occur first on time-sensitive paths where they help manage soaring carbon
costs, and that specific carbon price thresholds will trigger modal shifts from air to rail
or from diesel to alternative fuels. The next chapter will apply this conceptual model to
real-world data from the China-Europe trade corridor, transforming these theoretical
interactions into quantifiable insights and actionable strategies.

4. Empirical Results and Analysis from the China-Europe Corridor

This chapter presents the findings from applying the analytical framework developed
in Chapter 3 to the real-world context of the China-Europe cross-border e-commerce
logistics corridor. The primary objective is to empirically test the framework's core
propositions and quantify the interactions between delivery time constraints, carbon
pricing, and the resulting optimal choices in transport paths and energy types. The
analysis is based on synthesized data from freight rate indices, logistics operator
schedules, and published emission factors, focusing on a representative route from a
major consolidation hub in Shenzhen, China, to a final distribution center in Frankfurt,
Germany.

4.1 Experimental Setup and Scenario Design
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To capture the multidimensional nature of the decision, three key variable dimensions

were defined, creating a matrix of scenarios for analysis:

1. Delivery Time Windows: Reflecting standard CBEC service tiers.

T1 - Expedited (10 days): Demanding service for high-value, urgent goods.
T2 - Standard (18 days): The most common service promise for general CBEC.

T3 - Economy (30 days): For bulky, low-value, or non-urgent items.

2. Carbon Price Scenarios: Reflecting current and potential future policy landscapes.

CO0 - Baseline ($0/ton CO-¢e): Represents the traditional, non-internalized cost
model.

C1 - Moderate ($75/ton CO-¢): Aligns with current prices in advanced carbon
markets (e.g., EU ETS).

C2 - Stringent ($150/ton CO:2e): Reflects a future, more aggressive

decarbonization policy.

3. Available Path & Technology Combinations: Five feasible multimodal strategies

were identified for the corridor, each with defined sub-options for drayage (first and

last-mile trucking):

Path A (Air Dominant): Truck (Shenzhen) — Air Freight (SZX/FRA) — Truck
(Frankfurt). Truck energy options: Diesel, BET (where charging infra exists).
Path B (Rail Express): Truck (Shenzhen—Xi'an) — Electric Rail
(Xi'an—Duisburg) — Truck (Duisburg—Frankfurt). Truck energy options:
Diesel, LNG.

Path C (Maritime Standard): Truck (Shenzhen) — Ocean Vessel
(Shenzhen—Rotterdam) — Truck (Rotterdam—Frankfurt). Truck energy
options: Diesel, LNG, BET.

Path D (Hybrid Sea-Air): Truck (Shenzhen) — Ocean Vessel
(Shenzhen—Dubai) — Air Freight (Dubai—FRA) — Truck. Truck energy
options: Diesel.

Path E (Enhanced Green Rail): BET (Shenzhen—Xi'an) — Electric Rail
(Xi'an—Duisburg) — BET (Duisburg—Frankfurt). Assumes full BET
capability on drayage.

Data inputs for direct costs, transit times, and emissions were aggregated from sources

including the Freightos Baltic Index (FBX) for ocean/air rates, China Railway

schedules, and the European Environment Agency's transport emission database. The

carbon cost was calculated as (Emission Factor x Distance x Carbon Price) and added
to the direct logistics cost to form the Green Adjusted Total Cost (GATC).
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4.2 Scenario Analysis and Optimal Strategy Shifts
The analysis reveals a clear and dynamic relationship between the imposed constraints

and the optimal strategy. The results are summarized in Table 4.1, which identifies the

strategy with the lowest GATC for each scenario.

Table 4.1: Optimal Path & Energy Strategy Matrix Under Different Scenarios

Time Carbon Price: CO . .
) Carbon Price: C1 ($75) Carbon Price: C2 ($150)
Window ($0)
Path A (Diesel . .
i Path A (BET Drayage) Path D (Hybrid Sea-Air)
Trucking)
T1: ) ) ) Logic: GATC of pure air (Path
) Logic: Only viable Logic: Path unchanged, .
Expedited ] ] o A) becomes prohibitive.
path. Air freight's but switching drayage to .
(10 days) ] ) ) Hybrid path, though slower,
high direct cost is BET reduces added carbon .
o . meets deadline at lower
justified by time. cost by ~12%.
GATC.
Path C (Diesel .
. Path B (LNG Drayage) Path E (Enhanced Green Rail)
Trucking)
T2: ) . Logic: Rail path's lower Logic: High carbon price
Logic: Maritime o o
Standard emissions vs. sea create a makes full electrification
offers the lowest . .
(18 days) . o ~8% lower GATC. LNG (rail+BET) cost-optimal
direct cost within the o o ]
. . drayage optimizes truck despite higher direct transport
time window.
leg. cost.
Path C (Diesel Path B (LNG Drayage) / Path
. Path B (LNG Drayage)
Trucking) E
T3: Logic: Maritime . i . i
. Logic: Rail's GATC Logic: Path B remains strong;
Economy remains the )
. advantage over sea widens | Path E becomes nearly cost-
(30 days) undisputed cost . . . .
. with a moderate carbon competitive, signaling a
leader with no carbon .
price. threshold.
penalty.

Key Observations from Table 4.1:

1. The Demise of "Cost-Only" Optimization: Under a zero-carbon price (C0), the
decision is a straightforward trade-off between time and direct cost, favoring air
for speed and sea for economy. The introduction of carbon cost (C1, C2)
completely disrupts this equilibrium.

2. Carbon Price as a Modal Shift Catalyst: For the Standard (T2) window, the
optimal strategy shifts from Maritime (CO) to Rail (C1, C2) as carbon price
increases. This demonstrates the framework's core proposition: carbon pricing
can make mid-tier, lower-emission modes like rail competitive even when their
direct cost is higher than sea freight.

3. Energy Choice as a First-Mover Decarbonization Lever: Notice that under

the Expedited (T1) window at C1, the primary path (Air) does not change, but
13



the optimal energy choice within that path shifts from Diesel to BET for drayage.
This highlights a critical insight: the selection of clean energy technologies
often represents the initial, most flexible response to carbon costs within a fixed

logistical architecture, preceding more structural modal shifts.

4.3 Sensitivity and Threshold Analysis

To delve deeper into the economic triggers for these shifts, a sensitivity analysis was
conducted around the Standard (18-day) scenario. The GATC for the three most
competitive paths (Maritime with Diesel, Rail with LNG, Enhanced Green Rail) was

calculated across a continuum of carbon prices from $0 to $200/ton. The results,

synthesized in Table 4.2, reveal critical carbon price thresholds.
Table 4.2: Carbon Price Threshold Analysis for Standard (18-day) Delivery

. . Carbon Carbon Price .
Path & Direct Logistics L Key Economic
. . Emissions (tons Threshold for .
Configuration Cost . Insight
CO.e) Competitiveness
Cost-optimal only
C. Maritime 145 when carbon is
Diesel $2,150 (Lowest - Baseline unpriced. GATC
( ( ) tons (Highest) . P .
Drayage) rises steeply with

carbon price.

B. Rail (LNG $2,400 0.92 tons (- Maritime's. Becomes
Drayage) (+11.6%) 36.5%) dominant strategy

At ~$55/ton, its
GATC equals

~$55/ton

between $55-
$130/ton.

E. Green Rail $2,700 0.58 tons (-
(BET Drayage) (+25.6%) 60%)

At ~$130/ton, its
GATC equals
standard Rail's. Its
~$130/ton high direct cost is
offset only under
stringent carbon
pricing.

The threshold analysis yields two pivotal findings:

The  Rail  Competitiveness  Threshold: A carbon  price of
approximately $55/ton is sufficient to make the China-Europe Railway Express
with LNG trucking a more cost-effective choice than traditional sea freight for
an 18-day delivery, despite an 11.6% higher direct freight cost. This price is
within the range of current EU ETS prices, suggesting this shift is already

economically rational for many shippers.
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e The Full Electrification Threshold: A much higher carbon price of
around $130/ton is required to justify the full "Green Rail" configuration with
electric drayage. This indicates that while the rail leg's electrification is a given
advantage, the transition to electric trucks for the connecting road segments
requires either a stronger carbon signal, a drop in BET TCO, or supportive
regulatory measures (e.g., zero-emission zones in cities like Frankfurt).

4.4 Managerial and Policy Implications of the Results

The empirical results strongly validate the theoretical framework. They move the
discussion from abstraction to actionable intelligence.

Based on the analysis of empirical results, a clear and operational strategic direction
has been revealed for different stakeholders. For logistics managers, the research results
strongly demonstrate the necessity of implementing dynamic and carbon cost-aware
path planning. Procurement and routing decisions can no longer rely on static freight
rates. Enterprises must establish an internal carbon shadow price mechanism or actively
monitor fluctuations in the carbon market price. Data shows that under the carbon
pricing system, establishing flexible clauses in transportation contracts - such as
reserving the option to switch from sea to rail transportation or specifying the use of
clean energy for short-distance transportation - has tangible financial value. This can
help enterprises proactively manage the constantly changing total cost of arrival due to
the internalization of carbon costs.

This study provides a strong commercial basis for e-commerce platforms and third-
party logistics companies to offer "green delivery options" at the consumer end.
Analysis shows that for orders with standard timelines, at a medium carbon price level,
the increase in the green-adjusted total cost brought about by adopting a lower-emission
route combination (such as railway plus liquefied natural gas truck) is controllable. This
provides a new idea for platform design: At the checkout stage, consumers can be given
the right to choose - on one side is the option with lower costs but higher carbon
emissions, and on the other side is the option with slightly higher prices but lower
carbon emissions. The price difference between the two can be transparently linked to
carbon costs, thereby converting environmental preferences into market signals and
guiding the supply chain towards a green transformation.

For policymakers, the carbon price thresholds identified in this study have crucial
reference value. To encourage the shift of goods from road/air to rail, setting a carbon
price floor close to $55 per ton seems to have a significant impact. To further stimulate

the popularization of advanced clean energy trucks in multimodal transport chains, a

15



significantly higher carbon price is needed, or it should be supplemented by targeted
infrastructure investment and purchase subsidies to reduce the direct cost premium
reflected in the model. In addition, policies aimed at reducing the transplanting costs
and time of railway stations and enhancing the efficiency of hub connections can
effectively lower the total cost of the green path after green adjustment, making it
competitive at a lower carbon price level and thereby accelerating the structural
decarbonization of the entire logistics system.

In conclusion, the results demonstrate that the interplay between time, cost, and carbon
is not linear but features clear inflection points. Carbon pricing is a powerful tool that
systematically reshuffles the ranking of logistical alternatives, making sustainable
intermodal solutions not just environmentally preferable, but economically rational
well before carbon prices reach extreme levels. The subsequent chapter will translate
these findings into concrete strategic recommendations.

5. Discussion

The results presented in the previous chapter provide a compelling snapshot of the
complex economic calculus that emerges when environmental externalities are
internalized into logistics decisions. However, the true value of this analysis lies not
merely in the identification of specific carbon thresholds or optimal paths under static
conditions, but in the broader themes and implications it reveals about the evolving
nature of global supply chains. This discussion aims to interpret these findings within
a wider operational, technological, and geopolitical context, acknowledging both the
power and the limitations of the model, and exploring the nuanced realities that
surround the transition to greener multimodal logistics.

A primary and profound implication of the study is the democratization of
sustainability through market mechanisms. The carbon price thresholds identified—
such as the pivotal ~$55/ton that makes rail competitive with sea freight for standard
deliveries—demonstrate that policy instruments like carbon trading or taxes are not
merely punitive. Instead, they function as powerful economic signals that recalibrate
market dynamics, making sustainable choices financially rational for profit-driven
entities. This shifts the decarbonization imperative from a purely moral or regulatory
burden onto the plane of strategic advantage. Companies that are early to develop
sophisticated carbon accounting and agile network redesign capabilities will gain a
first-mover advantage, insulating themselves from future carbon price volatility and
aligning with the growing compliance demands of markets like the European Union.

The model thus reveals carbon pricing not as a simple cost, but as a transformative
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market force that rewards innovation and operational flexibility in clean logistics.
However, this optimistic interpretation must be tempered by a discussion of
the significant barriers and inertias that exist beyond the simplified model. Our
analysis treats infrastructure availability—such as LNG refueling stations or high-
power charging hubs for BETs—as a binary, pre-existing condition. In reality, the
development of this infrastructure is a classic "chicken-and-egg" problem. Shippers are
hesitant to commit to clean energy vehicles without a guaranteed network, while energy
providers are reluctant to invest without proven demand. This creates a spatial and
temporal unevenness that our static model cannot capture. A route passing through a
region with supportive green infrastructure may show an optimal clean-energy path,
while an otherwise identical route crossing a different region does not. This highlights
a critical role for targeted, corridor-specific public investment to de-risk private sector
adoption and ensure that the green alternatives our model identifies are genuinely
accessible, not just theoretically optimal.

Furthermore, the analysis hinges on the availability and reliability of data—an area rife
with practical challenges. The model assumes accurate, real-time knowledge of
emissions factors, which in reality can vary significantly based on factors like vehicle
load, age, specific engine technology, and even the carbon intensity of the local
electricity grid for EVs. This "green data gap" presents a major obstacle. Logistics
managers cannot optimize what they cannot measure with precision. Therefore, the
push for decarbonization must be paralleled by a concerted industry-wide effort to
standardize emissions tracking and reporting, potentially leveraging technologies like
blockchain for immutable, shared ledgers of carbon footprints across complex, multi-
partner supply chains. The accuracy of our model's outputs is directly contingent on the
quality of its inputs, making data transparency a foundational enabler of the green
transition.

Another crucial dimension for discussion is the geopolitical and operational
resilience aspect. Our findings show that under a moderate carbon price, the China-
Europe Railway Express emerges as a robust, cost-competitive alternative. This has
implications beyond mere cost and carbon. Over-reliance on few maritime chokepoints
(e.g., the Suez Canal) has exposed global supply chains to significant disruption risks.
The development and greening of continental land bridges, like the rail corridors,
enhances strategic optionality and resilience. By diversifying routes and simultaneously
lowering their carbon liability, companies can build supply chains that are both greener

and more robust against geopolitical shocks or infrastructure failures. Thus, the drive

17



for sustainability and the drive for supply chain resilience are not divergent but are
increasingly convergent strategic goals.

Finally, we must consider the behavioral and demand-side dimensions that our
purely economic model sidelines. The suggestion of offering consumers a "green
delivery option" assumes a willingness to pay, which is influenced by complex factors
like cultural attitudes, trust in corporate claims, and the clarity of communication.
Greenwashing fears could undermine such initiatives. Therefore, the implementation of
consumer-facing carbon choices must be backed by the kind of rigorous, transparent
analysis demonstrated in this study, providing verifiable evidence of emission
reductions. Moreover, the model focuses on a single shipment. In practice, the
consolidation of many small e-commerce parcels into full container loads is a key
efficiency driver. Future models need to integrate this consolidation effect, exploring
how the optimization of packaging hubs and consolidation centers interacts with path
and energy choices at a network level, potentially unlocking further economies of scale
in green logistics.

In conclusion, while the mathematical model provides a powerful and clear lens through
which to understand the economic triggers for greener logistics, this discussion
underscores that the journey from model output to real-world transformation is complex.
It requires coordinated action across multiple fronts: smart policy that sets meaningful
carbon prices and funds enabling infrastructure, corporate investment in data systems
and flexible contract structures, and technological innovation to improve the
performance and reduce the cost of clean energy assets. The model tells us what is
economically optimal; realizing that optimal state demands that we address the how—
the intricate web of practical, collaborative, and systemic changes needed to build the
truly sustainable and efficient supply chains of the future.

6. Conclusion

This study has systematically investigated the intricate optimization problem arising at
the intersection of cross-border e-commerce logistics, multimodal transport, and the
imperative for decarbonization. By constructing a comprehensive analytical framework
and applying it to the empirical context of the China-Europe trade corridor, we have
moved beyond generic calls for sustainability to deliver quantifiable, actionable
insights. The core contribution of this research lies in rigorously demonstrating that the
selection of transport paths and energy types cannot be treated as sequential or
independent decisions; they are inherently synergistic. The optimal strategy emerges

from their dynamic interplay, moderated decisively by two external forces: the stringent
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delivery time windows of e-commerce and the escalating price of carbon emissions.
Our findings yield several definitive conclusions. First, carbon pricing is not a marginal
factor but a transformative mechanism that fundamentally reshuffles the
competitiveness of logistics modes. We identified specific carbon price thresholds—
most notably, a price point near $55 per ton of CO2e—at which the economic calculus
flips, making mid-tier, lower-emission options like the China-Europe Railway Express
with supporting clean drayage a more cost-effective total solution than traditional sea
freight for standard delivery timelines. Second, the adoption of alternative energy
vehicles (e.g., LNG, electric trucks) acts as a critical and often first-response lever for
decarbonization. Within a fixed transport architecture, switching the energy type for
drayage segments can significantly mitigate carbon costs before a full modal shift
becomes necessary. Third, the research underscores that achieving true optimization
requires a shift from static planning to dynamic, carbon-informed routing, necessitating
enhanced data capabilities and flexible partner contracts.

However, the journey from economic model to real-world implementation is paved with
challenges. The model’s clarity exposes the concomitant need for enabling conditions:
targeted infrastructure investment to overcome the "chicken-and-egg" problem of clean
fuel availability, industry-wide standardization of emissions data, and policies that not
only price carbon but also streamline transshipment processes to enhance the
attractiveness of intermodal solutions.

In summary, the transition to sustainable cross-border logistics is both an economic
necessity and a strategic opportunity. The triad of cost, speed, and carbon can be
reconciled through intelligent system design. For logistics managers, this means
building agility and carbon intelligence into core operations. For policymakers, it
validates the power of carbon pricing while highlighting the need for complementary
infrastructure and efficiency policies. Ultimately, this study provides a validated
roadmap, demonstrating that through the synergistic optimization of routes and energy,
the goals of commercial efficiency and environmental stewardship are not merely
compatible but can be powerfully aligned to define the next generation of global supply

chains.
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