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Abstract 

Aiming at the pain point that destructive crossover operations in traditional genetic algorithms damage key 

scheduling edge structures in the multi-objective flexible job shop scheduling problem, an improved genetic 

algorithm based on the Edge Assembly Crossover operator is proposed.In the crossover phase, a parent- 

cycle recombination strategy is employed to systematically preserve machine-task adjacency relationships 

while exploring the solution space in a structured way. Then, the improved algorithm is integrated with the 

non-dominated sorting framework based on NSGA-II. By protecting key adjacency relationships during the 

crossover process, the convergence of the Pareto front and the diversity of solutions are significantly  

enhanced. Through experiments on the MK01-10 and LA01-40 datasets, the improved EAX-GA algorithm 

demonstrates significant advantages in both convergence results and convergence speed. 
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1 INTRODUCTION 

Manufacturing serves as a vital cornerstone of the modern economy. Optimizing the Job Shop Scheduling Problem enables 

simultaneous leaps in production efficiency and maximization of resource utilization. Traditional JSP approaches struggle to 

meet contemporary manufacturing demands. The Flexible Job Shop Scheduling Problem (FJSP), as an extension of JSP, of- 

fers greater practical applicability. As research depth and problem complexity expand, various specialized FJSP models have 

emerged for specific scenarios, including: real-time scheduling with order insertion or process changes 1,2, dual-resource col- 

laborative constraint optimization, and trade-offs between energy conservation and production efficiency. Genetic algorithms 

demonstrate applicability in most of these scenarios. To enhance their problem-specific solution efficiency, algorithmic archi- 

tectures are typically tailored through targeted improvements 3, leading to the systematic integration of diverse improvement 

operators and adaptive mechanisms within the genetic algorithm framework. Chowdhury et al. 4 introduced three key methods 

into genetic algorithms: hybrid crossover-mutation operators, circular parent topology, and a ternary selection protocol with 

family constraints, significantly improving the efficiency of final solutions. Jiang et al. 5 refined the single mutation approach 

in genetic algorithms by designing four mutation operators based on process coding and machine coding. By updating their 

weights according to performance during iterations and adjusting their selection mutation operators, they enhanced local search 

capabilities and accelerated convergence speed. 

Gonçalves et al. 6 proposed a hybrid genetic algorithm based on random key chromosomal coding. Its core advantage lies in 

dynamically balancing global search with local optimization, making it suitable for large-scale complex scheduling scenarios. 

Choi et al. 7 developed a variable neighborhood search algorithm based on hybrid genetic algorithms (GA-VNS) for scheduling 

problems in flexible parallel machine workshops. Gu et al. 8 proposed an improved adaptive variable neighborhood search 

genetic algorithm (IGA-AVNS). The IGA-AVNS algorithm employs OS-MA hybrid initialization to generate populations, 

followed by group-parallel optimization. Optimal solutions are stored in an elite pool, enabling adaptive neighborhood local 

search. Its effectiveness was validated through experiments based on three standard benchmark problems. Beyond methods 
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such as a variable neighborhood search in genetic algorithms, another targeted improvement strategy exists. The edge-based 

approach, initially proposed by Nagata et al. 9, has been demonstrated by Nikfarjam et al. 10 to be effective in solving large- 

scale Traveling Salesman Problems (TSP). However, no existing studies have applied this method to the flexible flow shop 

scheduling problem. This paper aims to fill this research gap. To evaluate its performance, the algorithm was tested on both 

single-objective and multi-objective variants of the flexible flow shop problem. 

Wu et al. 11, based on the extended HFSP model, proposed a multi-objective evolutionary collaborative learning framework 

that combines evolutionary algorithms and reinforcement learning.A multi-resolution grid strategy, based on the traditional 

Bacterial Foraging Optimization (BFO) algorithm, was proposed by Ji et al. 12 to enhance the diversity and distribution of so- 

lution sets in multi-objective optimization problems. In contrast to the aforementioned approach, NSGA-II represents another 

mainstream methodology for addressing multi-objective optimization problems. Numerous studies have proposed improve- 

ments to the NSGA-II algorithm. 13 proposed an improved NSGA-III algorithm (I-NSGA-III) that used a good point set instead 

of random initialization to generate a more uniformly distributed initial population. 14 proposed a hybrid simulated binary and 

improved arithmetic crossover (SBAX) operator for bi-objective optimisation and applied it to NSGA-II to enhance its perfor- 

mance. 15 proposed NSGA-II algorithm integrated with the TOPSIS method to optimize parameters in biclustering algorithms 

for analyzing complex relationships in large datasets. 16 proposed a novel optimization model that integrates Fuzzy set theory 

with the NSGA-III to solve the time-cost trade-off (TCT) problem in construction projects. Results showed that the proposed 

Fuzzy-NSGA-III outperforms traditional multi-objective algorithms in convergence, diversity, and solution quality, supported 

by metrics including GD, HV, and QM. 

In contrast to prior research, this study proposes an improved NSGA-II algorithm that incorporates an efficient crossover op- 

erator to improve convergence efficiency. The Edge Assembly Crossover (EAX) operator employs a recombination mechanism 

based on AB cycles combined with a local optimization strategy. The core of this hybrid method consists of: structurally de- 

composing parental edge information, constructing relaxed intermediate solutions, and guiding the generation of high-quality 

offspring through localized refinement. By adaptively extending AB cycle paths to enhance neighborhood search capabili- ties, 

EAX exhibits significant advantages in combinatorial optimization particularly in multi-objective optimization scenarios 

involving makespan and energy consumption. 

The remainder of this paper is structured as follows: Section 2 formulates a mathematical model for flexible job shop schedul- 

ing. Section 3 elaborates on the enhanced NSGA-II algorithm integrated with a neighbor-edge pairing crossover operator, which 

leverages an AB-cycle recombination mechanism to strengthen global exploration within the solution space and achieve efficient 

convergence toward the Pareto front. Section 4 provides experimental validation of the proposed approach. Finally, Section 5 

concludes the study and suggests directions for future research. 

 

 

2 PROBLEM DESCRIPTION OF FJSP 

2.1 Description and Assumptions of the Mathematical Model 

The FJSP problem is specifically defined as processing N jobs (denoted as J = J1, J2, J3, ..., Jn) sequentially on M machines 

(denoted asM = M1, M2, M3, ..., Mn ). Each job Ji (wherei = 1, 2, ..., N) undergoes Oi processing steps, and the processing 

time for each step on each machine is known. The goal is to determine the optimal processing sequence while establishing the 

following assumptions for the mathematical model: 

1. Once an operation begins on a machine, it cannot be interrupted until completion. 

2. Each machine can process only one workpiece at a time; a workpiece can be processed by only one machine 

simultaneously. 

3. Each operation must complete preceding operations before starting subsequent ones. 

4. All jobs arrive at time zero, and all machines are available at time zero. 

5. Transportation failures are ignored. 

6. Sudden equipment failures and urgent orders are not considered. 

7. Material path interference is ignored. 
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T A B L E 1  parameters of FJSP 
 

Parameter Description 
 

n Number of workpieces to be processed 

m Number of machines available for processing 

Oij Process j for workpiece i 

Sijk Start time of operation Oij on machine k 

Fijk Finish time of operation Oij on machine k 

Tijk Processing time required for operation Oij on machine k 

Uijk  Boolean variable determining whether operation Oij is performed on machine k 

Qabij Variable representing the sequence relationship between operations Oab and Oij 

makespan Maximum completion time 
 

 

2.2 Objective Function and Constraints 

Mathematical symbols for model parameters are defined in detail in Table 1. The variable indices in the table are defined as 

follows: i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., Oi}, k ∈ {1, 2, ..., m}. The constraints correspond to the following six equations: Equation 
(1): The completion time of any operation equals the sum of its start time and processing time, indicating that the manufacturing 

process is non-preemptive operations proceed continuously from initiation to completion. Equation (2): Ensures each operation 

is assigned to exactly one machine. Equation (3): The maximum completion time of the entire scheduling plan must exceed the 

completion time of any single operation. Equation (4): Only one operation can be processed on the same machine at the same 

time. Equation (5): The completion time of a preceding operation on the same workpiece must strictly precede the start time 

of a subsequent operation to guarantee the temporal validity of the production sequence. Equation (6): All time variables must 

satisfy non-negativity constraints. 

Fijk = Sijk + Tijk · Uijk ∀i, j, k (1) 
n 

Uijk = 1  ∀i, j (2) 
k=1 

Fijk ≤ makespan ∀i, j, k (3) 

Uaby · Faby + m · (Qabij − 1) < Uijk · Sijk (4) 

Fijk ≤ Si(j+1)k′ ∀i, j(5) (5) 

Fijk ≥ 0, Sijk ≥ 0, Tijk ≥ 0  ∀i, j, k (6) 

This paper aims to minimize both the maximum completion time and total energy consumption. Reducing the maximum com- 

pletion time typically requires increasing parallelism or employing high-performance machines, which often exhibit higher 

energy intensity. Conversely, lowering energy consumption necessitates selecting low-power devices or extending task execu- 

tion cycles. These objectives present a time-energy tradeoff that cannot be simultaneously optimized through a single solution. 

The mathematical expression for minimizing the maximum completion time is as follows: 

min(makespan) = max Fi i ∈ {1, 2, . . . , n} (7) 

The total energy consumption of a machine comprises two components: processing energy consumption and idle energy con- 

sumption. Processing energy consumption represents resource expenditure during workpiece machining, exhibiting a positive 

correlation with processing time and machine processing power: 

Eproc = 
Σ 

Tijk · Uijk · Pproc ∀i, j, k (8) 
ijk 

 

Idle energy consumption denotes standby consumption when the machine is powered on but not machining workpieces, 

exhibiting a positive correlation with idle time and machine idle power: 

Eidle = 
Σ

(Fmax − 
Σ 

Tijk · Uijk) · Pidle ∀i, j, k (9) 
k ij 

The total energy consumption of the machine is the sum of the above two components. 
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F I G U R E 1  Schematic diagram of the adjacent edge concept 

 

 

3 IMPROVED GENETIC ALGORITHM BASED ON EDGE ASSEMBLY CROSSOVER 

OPERATOR 

3.1 Machine Instruction Encoding 

Solutions to the FJSP scheduling problem can be mapped to a chromosome encoding structure, which represents the task 

execution sequence of each machining device through a multidimensional vector. Task allocation for a single device is encoded 

using a one-dimensional vector. Table 2 presents a small-scale example to illustrate the problem characteristics. This example 

involves three workpieces, each requiring six machining operations. This example involves three workpieces, each requiring six 

processing steps. As shown in the table, each step can be executed on different machines, with processing time varying based 

on equipment selection. For instance, the first step of Workpiece 2 can be performed on Machine 1 or Machine 3. It should be 

noted that the configuration in this example, where the number of processing machines exceeds the number of workpieces, 

represents a non-typical discrete manufacturing scenario. 

 

 
T A B L E 2  An instance of FJSP 

Process 1 Process2 Process 3 Process 4 Process5 Process6 

Workpiece 1 4 or 3 6 or 3 or 2 6 or 2 or 1 2 4 or 2 6 

Workpiece 2 3 or 1 5 or 3 or 2 6 6 or 2 or 1 3 6 or 4 

Workpiece 3 2 3 1 4or 2 6 or 2 1 

 

 

Machine-task assignments are encoded using a sparse mapping structure. Specifically, the indices i and j of process O(ij) are 

defined as the horizontal and vertical coordinates in a two-dimensional coordinate system. Based on the example in Table 2, one 

possible solution for the task queue is illustrated in Figure 1. Each machine processes parts in left-to-right order. An element 

connecting two adjacent vertices is termed an edge, represented by red arcs in Figure 1. Edges sharing a common vertex form 

an adjacency relationship. This adjacency concept provides the theoretical foundation for the proposed adjacent-edge assembly 

intersection operator. 

 

3.2 Population Initialization 

The conventional NSGA-II algorithm relies on stochastic population initialization. This approach frequently induces an uneven 

distribution of individuals across the search space, characterized by overcrowding in certain areas and scarcity in others. Such 

distributional imbalance can decelerate the convergence rate and increase the propensity for the algorithm to become trapped 

in local optima in later stages. To mitigate these limitations, an enhanced initialization strategy utilizing the concept of a well- 

pointed set is introduced. Ensuring a homogeneous initial distribution of individuals is crucial for accelerating convergence and 

improving the quality of the final solutions. Following the definition provided by He et al. 17, a well-pointed set is characterized 

by these criteria: 



An Improved edge-Based Solution for Multi-objective Flexible Job Shop Scheduling 5 
 

    

j 

p 

 

 
 

F I G U R E 2  2D initial population distribution 

 

 

1. Consider the hypercube Gs, which is the set of all points x in an S-dimensional Euclidean space. 

x =
 

x1, x2, ..., xs

 
∈ Gs, 0 ≤ xj ≤ 1, j = 1, 2, ..., s (10) 

2. Within Gs, a set Pn(i) comprising n points is defined, expressed as: 

Pn(i) =  x(1), x(2), ..., x(n) 

x(i) =
  

x(i), x(i), ..., x(i), ..., x(i)

 (11)
 

1 2 j s 

 

for indices i = 1, 2, ..., n and j = 1, 2, ..., s. 

3. For a given point r = (r1, r2, ..., rs) ∈ Gs, the Mn(r) quantifies the number of points within Pn(i) that adhere to the constraint: 

0 ≤ x(i) ≤ rj, j = 1, 2, ..., s (12) 
 

 

φ(n) = sup | 
r∈Gs 

Mn(r) 
− |r|, |r| = r1r2r3 · · · rs, (13) 

n 

φ(n) is the discrepancy of points set Pn(i). Pn(i) is therefore considered to be uniformly distributed on Gs that has a deviation 

of φ(n) . 

4. The designation of a point r ∈ Gs as "good" is contingent upon the bounded discrepancy of its associated point set Pn, 

φ(n) ≤ C(r, ϵ).n−1+ϵ. 

5. For practical implementation, a common construction heuristic is defined by equation(14). 

rj = 2 cos

  
2πj

  

, 1 ≤ j ≤ s (14) 

where p is the least prime satisfying p ≥ 2s + 3. 

Two distribution plots were generated for 36 populations: one using a random method and the other using a good point set 

method. As shown in Figure 2, the point distribution from the good point sequence is more uniform than that from the random 

point sequence. Although the good point set requires more execution time, its impact on the overall algorithm cost is minimal. 

 

3.3 EAX Operator 

Crossover, as a core mechanism in evolutionary computation, simulates biological genetic recombination through structured 

information exchange between parent chromosomes to enhance solution quality. By randomly combining parental gene frag- 

ments, offspring can inherit desirable traits while exploring new regions of the solution space. The neighbor-edge crossover 

operator demonstrates unique advantages in combinatorial optimization: (1) Systematically preserves critical edge information 

from parent solutions, ensuring solution feasibility; (2) The AB-cycle mechanism enables non-destructive recombination of 

machine-task assignments; (3) Dynamic neighborhood evaluation guides the crossover process toward advantageous search 

directions, accelerating convergence toward the Pareto optimal frontier. After population initialization, each individual stores in- 

dividual storage information containing the scheduling sequences for all machines. For each machine, extract the task sequence 

Tm.The process of finding the AB-cycle between parent A and parent B is shown in the figure 3. 
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F I G U R E 3  The process of forming the AB-cycle 

 

 

After population initialization, the individual storage information contains the scheduling sequences for all machines. First, 

two individuals are selected as parents A and B. Then, by traversing each scheduling sequence, adjacent edges are generated 

and stored in the adjacent edge sets, labeled as EA and EB. Combining the adjacent edge assembly crossover operator, the 

pseudocode is as follows: After constructing the intermediate solution in Step 3, its feasibility must be verified: First, check 

against the constraint function to avoid conflicts in machine allocation or process sequence caused by path reorganization. If 

conflicts or infeasibilities exist, trace back from the conflict point to reassign machines for conflicting tasks or adjust their  

schedules. If tracing back fails to resolve the conflict, perform local search optimization to find the solution with the smallest 

disturbance correction. After correction, merge the subtours for the new generation. 

 

3.4 Non-Dominant Sorting Framework Based on EAX Operators 

Multi-objective optimization aims to achieve the coordinated optimization of multiple competing objectives. When 

conflicts arise between objectives, the complexity of the problem increases significantly. The solution process for 

such optimization problems inevitably generates a set of trade-off optimal solutions, collectively referred to as 

the Pareto optimal solution set. A non-dominated relationship implies that if solution A is no worse than solution 

B across all objectives and strictly outperforms B on at least one objective, then A dominates B. Through 

dominance relation identification and recursive hierarchical partitioning, the algorithmic complexity is re- duced from 

O(mn3) to O(mn2) ,where m denotes the number of objectives and n represents the population size. This study 

proposes a novel fusion of the NSGA-II with EAX operator to address workflow scheduling challenges in multi- objective 

optimization scenarios. The merged framework leverages EAX’s edge recombination mechanism to enhance the global search 

capability within the NSGA-II evolutionary architecture, achieving effective convergence toward high-quality Pareto-optimal 

scheduling solutions. In workflow scheduling optimization, each candidate solution is encoded as a chromo- some, where 

individual genes represent discrete workflow tasks. Allele values at each locus correspond to specific identifiers. The 

evolutionary population consists of N chromosomes. During the crossover process, the EAX operator replaces the traditional 

genetic crossover operator. Figure 4 illustrates the specific flowchart. 

To ensure diversity in population distribution, the crowding distance is introduced. The crowding distance Di,j between 

chromosomes i and j within the same class is defined as follows. 

Dij =|Makespan(i) − Makespan(j)| 

+ |Esum(i) − Esum(j)| (15) 

Cd = min{Di1, Di1, · · · , Din} (i ̸= k) (16) 
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Algorithm 1 Edge Assembly Crossover (EAX) 

Require: Two parent tours pa and pb 

Ensure: Offspring tour 

1: Let Ea and Eb be the edge sets of pa and pb respectively 
2: Construct an undirected multigraph G from Ea and Eb 

3: Step 1: Label edges 

4: for each edge in Ea do 

5: Label the edge as belonging to Ea 

6: end for 

7: for each edge in Eb do 

8: Label the edge as belonging to Eb 

9: end for 

10: Step 2: Construct AB-cycles 

11: Initialize an empty set Eset for AB-cycles 

12: while there are unvisited nodes in G do 

13: Select a random unvisited node v as starting point 

14: Initialize an empty cycle C 

15: current → v 

16: first → true 
17: repeat 

18: if first is true then 

19: Select an edge (current, u) from Ea 

20: first → false 
21: else 

22: Alternate between selecting edges from Ea and Eb 

23: end if 

24: Add the selected edge to C 

25: current → u 

26: Mark the edge as visited 

27: until return to the starting node v 

28: if C is a valid AB-cycle (not consisting of two overlapping edges) then 

29:  Add C to Eset 

30: end if 

31: end while 

32: Step 3: Construct intermediate solution 

33: t → pa 

34: for each AB-cycle in Eset do 

35: Remove edges in Ea∩ AB-cycle from t 

36: Add edges in Eb∩ AB-cycle to t 
37: end for 

38: Step 4: Merge subtours 

39: Identify all subtours in t 

40: while number of subtours > 1 do 

41: Select the smallest subtour M 

42: Find the optimal combination of edges e∗, e∗′, e∗′′, e∗′′′ that minimizes: 

−d(e) − d(e′) + d(e′′) + d(e′′′) 

43: Remove e∗ and e∗′ from t 

44: Add e∗′′ and e∗′′′ to t 

45: end while 

46: Step 5: Output offspring 

47: return the resulting tour t 
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F I G U R E 4  Flowchart of proposed hybrid algorithm 

 

 

Classify chromosomes based on dominance relationships, assigning ranks of 1, 2, ..., n. Calculate fitness using the following 

formula based on their rank k and crowding distance. After computing each individual’s fitness, compare values to select 

superior individuals for inheritance into the next generation population. 

, 

k exp
 
− Cd (i)

  
 

fit(i) = exp  
T0 

+ 
1 + exp

 
− Cd (i)

   (17) 

For generating a set of Pareto optimal solutions to multi-objective optimization problems, this paper proposes a method 

combining the Entropy Weight Method (EWM) 18 and the Two-Objective Performance Selection by Similarity to Ideal Solution 

(TOPSIS) 19. The Entropy Weight Method is an objective weighting approach based on information entropy theory, which 

determines weights through the variability of indicator data, thereby eliminating biases caused by subjective weighting. Lower 

information entropy indicates reduced uncertainty in an indicator, resulting in a higher weight. Since the two objective functions 

defined in this study exhibit higher individual fitness with smaller numerical values, equation 18 is required to normalize the 

objective values within the Pareto solution set. In the formula, x(ij) represents the jth objective value of the ith solution. Next, 

Equations 19 and 20 are used to calculate the information entropy. In Equation 20, ej represents the information entropy of the 

jth objective, and n denotes the number of solutions.Then, the target weights ωj are calculated using information entropy to 

eliminate subjective weighting bias, as shown in Equation 21. 

rij = 
  max(xj) − xij  

max(xj) − min(xj) 
  xij  

 

(18) 

pij = n 

j=1 
n 

xij 

(19) 

ej = − 
 1  Σ 

pij ln pij (20) 

 1 − ej  
ωj = Σm 

(1 − ej) 
(21) 

i=1 
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F I G U R E 5  Visualization of index 

 

 

After   obtaining   the   respective   weights,   the   rest   procedure   proceeds   as   follows: Step  

1:  Construct  the  weighted  decision  matrix  by  multiplying  the  standardized  objective  values  by the  

weights  calculated  using  the  entropy  weight  method,  as  shown  in  Equation  22,  where  r(ij)  de- notes  the  

standardized  decision  matrix  element  and  v(ij)  denotes  the  weighted  matrix  element; Step  2:  

Determine  the  positive/negative  ideal  solutions  using  Equations  23  and  24.  Step  3:  Calculate the distance 

of each solution to the positive and negative ideal solutions. The distance to the positive ideal solution is 

given by Equation 25, and the distance to the negative ideal solution by Equation 26. Step 4: Calculate the 

proximity, defined as Ci. A higher proximity value indicates that the solution is closer to the positive ideal solution, signifying 

superior overall performance of the scheme in multi-objective decision-making. 

vij = ωj • rij (22) 

A+ = (max(v1j), max(v2j), ..., max(vmj)) (23) 

A− = (min(v1j), min(v2j), ..., min(vmj)) (24) 
,
uΣm

 

 

,
uΣm

 

Di = ,  
j=1 

(vij − Ai ) 

 

D− 

(26) 

Ci = 
+ 

i  
− (27) 

Di + Di 

After calculating the proximity scores for all solutions in the optimal solution set, they are sorted in descending order, with the 

top-ranked solution selected as the final optimal solution. This method balances the dimensional differences and varying 

importance of different objectives through standardization and weight allocation. Figure 5 presents a proximity-ranked bar 

chart illustrating the quality of optimal solutions, where the horizontal axis displays the reordered solution IDs from highest to 

lowest proximity, and the vertical axis represents proximity scores within the range from 0 to 1. 

 

 

4 EXPERIMENT 

4.1 Experimental Environment 

To validate the effectiveness of the improved genetic algorithm in solving flexible job shop scheduling problems, we imple- 

mented a computational framework using Python 3.9 within the PyCharm 2022.3 development environment. The experimental 

platform utilized an AMD Ryzen 7 6800H processor (3.2 GHz base frequency, 4.7 GHz boost frequency) with integrated 

Radeon Graphics, operating on a 64-bit Windows 11 Professional architecture. All numerical experiments were conducted on 

this computational system. The parameters used in the experiment is shown. 

j=1 

(25) i 
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Parameter Value 

Generations 500 

Population size 200 

Selection Tournament selection 

Crossover probability 90% 

Maximum depth for crossover 10 

Mutation probability 10% 

Maximum depth for mutation 5 

 

4.2 Experiment 1 

Experiment 1 focuses on solving single-objective problems by minimizing makespan. 40 benchmark instances of different 

scales were used to verify the effectiveness of EAX-GA. These instances were LA01 – LA4020. In algorithm evaluation, FJSP 

instances of varying problem sizes were analyzed and compared with classical algorithms for solving FJSP. 

The results were compared in Table 3 other algorithms: Genetic Algorithm (GA),Hippopotamus Optimization Algorithm 

(HO), Tabu Search(TS), chaos-based improved MPA (CIMPA)and Improved Scatter Search (ISS) proposed by Holland et al. 21, 

Amiri et al. 22, Li et al. 23, Zhang et al. 24 and Wang et al. 25 respectively. 

To mitigate randomness, each test was run 100 times. In most cases, the EAX-GA and CIMPA algorithms achieved relatively 

low makespan values, demonstrating the most outstanding and stable performance overall. The ISS algorithm followed closely, 

delivering comparable results to the former two in the majority of test instances. The HO and TS algorithms generally performed 

at an intermediate level. In contrast, the traditional GA yielded the highest makespan values among all six algorithms in most 

instances, indicating that its baseline version performed relatively poorly under the given experimental conditions. 

For the FJSP problem, specially designed and enhanced hybrid algorithms such as EAX-GA and CIMPA, as well as intelli- 

gent search strategies like ISS, significantly outperformed traditional metaheuristics and other heuristic methods. In particular, 

EAX-GA and ISS exhibited exceptional robustness, with minimal fluctuations in solution quality across 40 test instances 

of varying scales and characteristics, and rarely showed significant performance degradation. Although CIMPA performed 

strongly in general, it exhibited noticeable deviations on specific instances such as LA06 and LA30 (with makespan val- 

ues as high as 1596, substantially higher than other algorithms), suggesting slightly lower stability compared to EAX-GA and 

ISS.When using the optimal solution as a benchmark, EAX-GA outperformed the remaining algorithms in 18 out of 40 

benchmark instances. Even when not surpassing other algorithms, it still achieved relatively strong solutions. The superior per- 

formance of EAX-GA is largely attributable to its effective crossover operator (EAX), which successfully inherits high-quality 

task sequences and machine allocation patterns from parent solutions while leveraging the global search ability of genetic algo- 

rithms. This enables a well-balanced trade-off between exploration and exploitation. These findings demonstrate that EAX-GA 

exhibits greater robustness. 

 

4.3 Experiment 2 

Experiment 2 focuses on solving multi-objective problems.Since the multi-objective model incorporates the total energy con- 

sumption indicator, parameter settings are required to generate random parameters within the feasible operational range, as 

shown in Table 4. 

To validate the overall performance advantage of the proposed EAX-NSGA-II algorithm in multi-objective flexible manufac- 

turing scheduling, this study designed ablation experiments to control variables and evaluate the independent contributions of 

core components such as initialization of good set and the EAX crossover operator. To isolate the respective effects of greedy 

initialization and the EAX operator, four contrasting algorithm versions were designed. The traditional NSGA-II serves as the 

reference group, employing the Process Ordering Crossover (POX)( 27) mutation operator and classic crowding distance sort- 

ing ( 28). In contrast to the heuristic construction logic of good-set initialization, greedy initialization randomly generates both 

machine assignments for population individuals and process sequences. All algorithms maintained identical hyperparameter 

settings, test case sets, and experimental procedures. With maximum completion time and total machine energy consumption 

as optimization objectives, each combination underwent 40 independent runs. 

To evaluate algorithm performance, optimal results were selected for comparative analysis. Line charts were plotted for each 

algorithm version against both objective functions. In the legends: dotted lines represent the greedy-initialized traditional 
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T A B L E 3  LA Series Experimental Results Data Sheet 
 

 Scale EAX-GA HO TS CIMPA ISS GA 

LA 1 10x5 703 724 746 675 707 752 

LA 2 10x5 692 728 748 684 721 761 

LA 3 10x5 620 634 647 636 620 662 

LA 4 10x5 632 635 646 621 625 667 

LA 5 10x5 599 614 622 593 595 635 

LA 6 15x5 819 861 878 926 821 892 

LA 7 15x5 856 873 881 916 848 901 

LA 8 15x5 878 924 948 874 882 961 

LA 9 15x5 910 942 951 900 902 984 

LA 10 15x5 956 965 979 958 923 1002 

LA 11 20x5 1070 1105 1102 1222 1077 1148 

LA 12 20x5 1039 1053 1061 1040 1039 1096 

LA 13 20x5 1159 1163 1178 1150 1117 1197 

LA 14 20x5 1302 1305 1310 1292 1281 1323 

LA 15 20x5 1210 1231 1227 1281 1212 1251 

LA 16 20x5 1034 1049 1052 1038 1015 1092 

LA 17 20x5 836 867 875 842 838 906 

LA 18 20x5 928 965 992 923 930 1009 

LA 19 20x5 919 958 971 930 920 987 

LA 20 20x5 953 978 979 951 959 1021 

LA 21 20x5 1178 1209 1217 1193 1169 1234 

LA 22 20x5 1089 1129 1131 1094 1105 1193 

LA 23 20x5 1158 1162 1154 1130 1116 1199 

LA 24 20x5 1078 1082 1075 1068 1070 1112 

LA 25 20x5 1062 1129 1134 1077 1106 1181 

LA 26 20x5 1399 1422 1429 1396 1373 1474 

LA 27 20x5 1488 1447 1459 1428 1407 1533 

LA 28 20x5 1400 1466 1487 1400 1439 1521 

LA 29 20x5 1370 1392 1415 1388 1375 1452 

LA 30 20x5 1488 1485 1478 1596 1437 1545 

LA 31 20x5 1856 1878 1904 2000 1829 1961 

LA 32 20x5 1924 2039 2044 2072 1944 2128 

LA 33 20x5 1912 1947 1963 1916 1878 2001 

LA 34 20x5 1866 2020 2033 1864 1966 2085 

LA 35 20x5 2022 2085 2118 2068 2025 2167 

LA 36 20x5 1430 1511 1519 1430 1462 1583 

LA 37 20x5 1644 1693 1684 1624 1635 1708 

LA 38 20x5 1420 1479 1482 1475 1421 1544 

LA 39 20x5 1450 1495 1498 1482 1464 1571 

LA 40 20x5 1434 1506 1525 1434 1466 1576 

 

 

NSGA-II; solid lines represent the good-set-initialized traditional NSGA-II; dashed lines represent the good-set-initialized 

EAX-NSGA-II algorithm; and dotted-dashed lines represent the EAX-NSGA-II algorithm with greedy initialization. Figure 6 

illustrates the trend of maximum completion time versus iteration count for different algorithms solving the MK08 problem 

instance. During the initial iterations from 0 to 25 generations, the solid line and dotted line exhibit smaller decreases than the 

dashed line and dashed-dot line. This demonstrates the advantage of EAX in rapidly eliminating combinations of adjacent edges 

with severe process conflicts and prolonged machine idle times. Around generation 30, the dashed line’s makespan value 



12 TAYLOR ET AL. 
 

 

T A B L E 4  The energy consumption for machines 
 

Machine Processing Efficiency Standby Efficiency 

M1 2.0 0.5 

M2 1.8 0.3 

M3 1.6 0.3 

M4 2.4 0.4 

M5 2.4 0.4 

M6 4.1 0.6 

M7 3.5 0.8 

M8 4.1 0.9 

M9 2.8 0.3 

M10 2.7 0.3 

 

(a) Comparison of Makespan (b) Comparison of Total Energy Consumption Results 
F I G U R E 6  Algorithm Results Comparison Chart 

 

 

reached approximately 575, the lowest among the four algorithms. This result demonstrates a synergistic effect between the 

good-set-initialization strategy and EAX’s neighbor edge screening mechanism. 

Figure 6(b) demonstrates that EAX can precisely identify and retain low-energy edge patterns from parent solutions during 

crossover. Furthermore, through its edge exploration strategy for AB loop paths, EAX achieves optimization by inheriting 

effective structures from parent generations. In contrast, traditional algorithms lack this capability, relying solely on incremental 

genetic adjustments per generation for energy optimization, resulting in a gradually declining curve. During the late stages 

between generations 300 and 500, the dashed line and dotted line converge to a steady state early on. The horizontal line enters 

steady-state convergence around generation 300, while the dotted line does not reach convergence until approximately 

generation 490, resulting in a 63.26% difference in temporal efficiency. 

 

 

5 CONCLUSIONS 

Numerous studies have collectively established an algorithmic framework for multi-objective FJSP: from fundamental operator 

refinements to complex scenario extensions, and from single-objective optimization to multi-objective trade-offs, progressively 

advancing algorithms from theory to practical application. Building upon this foundation, this paper proposes the EAX-GA 

algorithm for multi-objective scheduling challenges in flexible manufacturing workshops. This approach integrates a neighbor- 

edge crossover operator with optimal point set initialization. The improved algorithm employs AB-cycle recombination, 

systematically preserving edge structures during crossover through depth-first search identification of minimal conflict loops, 

thereby mitigating the disruptive effects observed in traditional genetic algorithms. Dynamic AB-cycle path expansion further 
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optimizes the global-local search balance, enabling structured exploration of the solution space. Experiments on benchmark 

instances validate that EAX-GA outperforms comparison algorithms in both convergence speed and solution quality. 

Future research will focus on deepening the following aspects: 1. The experiments primarily utilized small-to-medium-scale 

MK and LA series test cases. For large-scale scenarios, the balance between the algorithm’s time complexity and solution qual- 

ity requires further validation. 2. The current model does not account for critical industrial dimensions such as transportation 

energy consumption, startup/shutdown energy costs, and equipment activation/deactivation energy expenditure. There is room 

for improvement in the model’s practical applicability. Future work will prioritize machine learning ensembles to enhance 

algorithm adaptability. Reinforcement learning-driven cross-control: Develop dynamic parameter adjustment mechanisms us- 

ing deep reinforcement learning to autonomously optimize cross-rate and mutation strategies based on real-time evolutionary 

patterns. Neural-assisted feasibility prediction: Implement graph neural networks (GNNs) during AB-cycle construction to pre-

evaluate edge restructuring feasibility, reducing computational time in large-scale scheduling. 
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