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Abstract

Aiming at the pain point that destructive crossover operations in traditional genetic algorithms damage key
scheduling edge structures in the multi-objective flexible job shop scheduling problem, an improved genetic
algorithm based on the Edge Assembly Crossover operator is proposed.In the crossover phase, a parent-
cycle recombination strategy is employed to systematically preserve machine-task adjacency relationships
while exploring the solution space in a structured way. Then, the improved algorithm is integrated with the
non-dominated sorting framework based on NSGA-II. By protecting key adjacency relationships during the
crossover process, the convergence of the Pareto front and the diversity of solutions are significantly
enhanced. Through experiments on the MK01-10 and LAQ1-40 datasets, the improved EAX-GA algorithm
demonstrates significant advantages in both convergence results and convergence speed.
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1 | INTRODUCTION

Manufacturing serves as a vital cornerstone of the modern economy. Optimizing the Job Shop Scheduling Problem enables
simultaneous leaps in production efficiency and maximization of resource utilization. Traditional JSP approaches struggle to
meet contemporary manufacturing demands. The Flexible Job Shop Scheduling Problem (FJSP), as an extension of JSP, of-
fers greater practical applicability. As research depth and problem complexity expand, various specialized FISP models have
emerged for specific scenarios, including: real-time scheduling with order insertion or process changes 12, dual-resource col-
laborative constraint optimization, and trade-offs between energy conservation and production efficiency. Genetic algorithms
demonstrate applicability in most of these scenarios. To enhance their problem-specific solution efficiency, algorithmic archi-
tectures are typically tailored through targeted improvements 3, leading to the systematic integration of diverse improvement
operators and adaptive mechanisms within the genetic algorithm framework. Chowdhury et al.  introduced three key methods
into genetic algorithms: hybrid crossover-mutation operators, circular parent topology, and a ternary selection protocol with
family constraints, significantly improving the efficiency of final solutions. Jiang et al. ° refined the single mutation approach
in genetic algorithms by designing four mutation operators based on process coding and machine coding. By updating their
weights according to performance during iterations and adjusting their selection mutation operators, they enhanced local search
capabilities and accelerated convergence speed.

Gongalves et al. ® proposed a hybrid genetic algorithm based on random key chromosomal coding. Its core advantage lies in
dynamically balancing global search with local optimization, making it suitable for large-scale complex scheduling scenarios.
Choi et al. ” developed a variable neighborhood search algorithm based on hybrid genetic algorithms (GA-VNS) for scheduling
problems in flexible parallel machine workshops. Gu et al.  proposed an improved adaptive variable neighborhood search
genetic algorithm (IGA-AVNS). The IGA-AVNS algorithm employs OS-MA hybrid initialization to generate populations,
followed by group-parallel optimization. Optimal solutions are stored in an elite pool, enabling adaptive neighborhood local
search. Its effectiveness was validated through experiments based on three standard benchmark problems. Beyond methods
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such as a variable neighborhood search in genetic algorithms, another targeted improvement strategy exists. The edge-based
approach, initially proposed by Nagata et al. °, has been demonstrated by Nikfarjam et al. 1° to be effective in solving large-
scale Traveling Salesman Problems (TSP). However, no existing studies have applied this method to the flexible flow shop
scheduling problem. This paper aims to fill this research gap. To evaluate its performance, the algorithm was tested on both
single-objective and multi-objective variants of the flexible flow shop problem.

Wu et al. 1, based on the extended HFSP model, proposed a multi-objective evolutionary collaborative learning framework
that combines evolutionary algorithms and reinforcement learning.A multi-resolution grid strategy, based on the traditional
Bacterial Foraging Optimization (BFO) algorithm, was proposed by Ji et al. 2 to enhance the diversity and distribution of so-
lution sets in multi-objective optimization problems. In contrast to the aforementioned approach, NSGA-I1I represents another
mainstream methodology for addressing multi-objective optimization problems. Numerous studies have proposed improve-
ments to the NSGA-11 algorithm. *3 proposed an improved NSGA-III algorithm (I-NSGA-111) that used a good point set instead
of random initialization to generate a more uniformly distributed initial population. ** proposed a hybrid simulated binary and
improved arithmetic crossover (SBAX) operator for bi-objective optimisation and applied it to NSGA-II to enhance its perfor-
mance. *° proposed NSGA-II algorithm integrated with the TOPSIS method to optimize parameters in biclustering algorithms
for analyzing complex relationships in large datasets. 16 proposed a novel optimization model that integrates Fuzzy set theory
with the NSGA-III to solve the time-cost trade-off (TCT) problem in construction projects. Results showed that the proposed
Fuzzy-NSGA-I111 outperforms traditional multi-objective algorithms in convergence, diversity, and solution quality, supported
by metrics including GD, HV, and QM.

In contrast to prior research, this study proposes an improved NSGA-11 algorithm that incorporates an efficient crossover op-
erator to improve convergence efficiency. The Edge Assembly Crossover (EAX) operator employs a recombination mechanism
based on AB cycles combined with a local optimization strategy. The core of this hybrid method consists of: structurally de-
composing parental edge information, constructing relaxed intermediate solutions, and guiding the generation of high-quality
offspring through localized refinement. By adaptively extending AB cycle paths to enhance neighborhood search capabili- ties,
EAX exhibits significant advantages in combinatorial optimization particularly in multi-objective optimization scenarios
involving makespan and energy consumption.

The remainder of this paper is structured as follows: Section 2 formulates a mathematical model for flexible job shop schedul-
ing. Section 3 elaborates on the enhanced NSGA-I1 algorithm integrated with a neighbor-edge pairing crossover operator, which
leverages an AB-cycle recombination mechanism to strengthen global exploration within the solution space and achieve efficient
convergence toward the Pareto front. Section 4 provides experimental validation of the proposed approach. Finally, Section 5
concludes the study and suggests directions for future research.

2 | PROBLEM DESCRIPTION OF FJSP

2.1 | Description and Assumptions of the Mathematical Model

The FIJSP problem is specifically defined as processing N jobs (denoted as J = Ji, J2, J3, ..., Jn) sequentially on M machines
(denoted asM = Mj, My, M3, ..., My ). Each job Ji (wherei = 1,2, ..., N) undergoes O; processing steps, and the processing
time for each step on each machine is known. The goal is to determine the optimal processing sequence while establishing the
following assumptions for the mathematical model:

1. Once an operation begins on a machine, it cannot be interrupted until completion.

2. Each machine can process only one workpiece at a time; a workpiece can be processed by only one machine
simultaneously.

3. Each operation must complete preceding operations before starting subsequent ones.

4. All jobs arrive at time zero, and all machines are available at time zero.

5. Transportation failures are ignored.

6. Sudden equipment failures and urgent orders are not considered.

7. Material path interference is ignored.
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TABLE 1 parameters of FISP

Parameter Description
n Number of workpieces to be processed
m Number of machines available for processing
Oy Process j for workpiece i
Siik Start time of operation O;j on machine k
Fi Finish time of operation O;j on machine k
Tik Processing time required for operation O;j on machine k
Ui Boolean variable determining whether operation Ojj is performed on machine k
Qabij Variable representing the sequence relationship between operations O,b and Ojj
makespan Maximum completion time
2.2 |  Objective Function and Constraints

Mathematical symbols for model parameters are defined in detail in Table 1. The variable indices in the table are defined as
follows: i € {1,2,..,n},j € {1,2,.., O}, k € {1, 2, ..., m}. The constraints correspond to the following six equations: Equation
(1): The completion time of any operation equals the sum of its start time and processing time, indicating that the manufacturing
process is non-preemptive operations proceed continuously from initiation to completion. Equation (2): Ensures each operation
is assigned to exactly one machine. Equation (3): The maximum completion time of the entire scheduling plan must exceed the
completion time of any single operation. Equation (4): Only one operation can be processed on the same machine at the same
time. Equation (5): The completion time of a preceding operation on the same workpiece must strictly precede the start time
of a subsequent operation to guarantee the temporal validity of the production sequence. Equation (6): All time variables must
satisfy non-negativity constraints.

Fiik = Sij + Tij - Ui~ Vi jk 1)
=
Uijk:l Vi,j (2)
k=1
Fij < makespan Vi, j,k 3)
Uaby * Fapy+ m -+ (Qabij — 1) < Uijk - Sij 4
Fik < Sigew  Vi,j(5) ®)
Fijk >0, Sijk > O,Tijk >0 Vi,j, k (6)

This paper aims to minimize both the maximum completion time and total energy consumption. Reducing the maximum com-
pletion time typically requires increasing parallelism or employing high-performance machines, which often exhibit higher
energy intensity. Conversely, lowering energy consumption necessitates selecting low-power devices or extending task execu-
tion cycles. These objectives present a time-energy tradeoff that cannot be simultaneously optimized through a single solution.
The mathematical expression for minimizing the maximum completion time is as follows:

min(makespan)=maxF i € {1,2,...,n} 7

The total energy consumption of a machine comprises two components: processing energy consumption and idle energy con-
sumption. Processing energy consumption represents resource expenditure during workpiece machining, exhibiting a positive
correlation with processing time and machine processing power:
Z ..
Eproc=  Tijk - Ui - PR Vi jk 8)
ijk
Idle energy consumption denotes standby consumption when the machine is powered on but not machining workpieces,
exhibiting a positive correlation with idle time and machine idle power:
z > ) o
Eidle= (Fmax—  Tijk - Uij) - P Vi j k 9
k ij

The total energy consumption of the machine is the sum of the above two components.
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FIGURE 1 Schematic diagram of the adjacent edge concept

3 | IMPROVED GENETIC ALGORITHM BASED ON EDGE ASSEMBLY CROSSOVER
OPERATOR
3.1 | Machine Instruction Encoding

Solutions to the FIJSP scheduling problem can be mapped to a chromosome encoding structure, which represents the task
execution sequence of each machining device through a multidimensional vector. Task allocation for a single device is encoded
using a one-dimensional vector. Table 2 presents a small-scale example to illustrate the problem characteristics. This example
involves three workpieces, each requiring six machining operations. This example involves three workpieces, each requiring six
processing steps. As shown in the table, each step can be executed on different machines, with processing time varying based
on equipment selection. For instance, the first step of Workpiece 2 can be performed on Machine 1 or Machine 3. It should be
noted that the configuration in this example, where the number of processing machines exceeds the number of workpieces,
represents a non-typical discrete manufacturing scenario.

TABLE 2 Aninstance of FIJSP

Process1  Process2 Process 3 Process 4 Process5  Process6
Workpiecel  4or3 6or3or2 6or2orl 2 4or2 6
Workpiece2  3orl 50or3o0r2 6 6or2orl 3 6or4d
Workpiece3 2 3 1 4or2 6or2 1

Machine-task assignments are encoded using a sparse mapping structure. Specifically, the indices i and j of process O(ij) are
defined as the horizontal and vertical coordinates in a two-dimensional coordinate system. Based on the example in Table 2, one
possible solution for the task queue is illustrated in Figure 1. Each machine processes parts in left-to-right order. An element
connecting two adjacent vertices is termed an edge, represented by red arcs in Figure 1. Edges sharing a common vertex form
an adjacency relationship. This adjacency concept provides the theoretical foundation for the proposed adjacent-edge assembly
intersection operator.

3.2 | Population Initialization

The conventional NSGA-I1 algorithm relies on stochastic population initialization. This approach frequently induces an uneven
distribution of individuals across the search space, characterized by overcrowding in certain areas and scarcity in others. Such
distributional imbalance can decelerate the convergence rate and increase the propensity for the algorithm to become trapped
in local optima in later stages. To mitigate these limitations, an enhanced initialization strategy utilizing the concept of a well-
pointed set is introduced. Ensuring a homogeneous initial distribution of individuals is crucial for accelerating convergence and
improving the quality of the final solutions. Following the definition provided by He et al. 7, a well-pointed set is characterized
by these criteria:
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FIGURE 2 2D initial population distribution

1. Consider the hypercube Gs, which is the set of all points x in an S-dimensional Euclidean space.

X= XXz, Xs €Gs,0=<x=<1,j=12,..,5 (10)
2. Within Gs, a set Py (i) comprising n points is defined, expressed as:
Po(i) = x®,x@ . x0

X0 = xO xO O O
1 2 j s

1)

forindicesi=1,2,..,nandj=1,2,..,s.
3.For agiven pointr = (ry, rz, ..., Is) € Gs, the My(r) quantifies the number of points within Pn(i) that adhere to the constraint:

0=<x"<rj=12.,s (12)
My(r
¢(n) = sup Ijl = Il Il = rirars - - - (13)
reGs

@(n) is the discrepancy of points set Pn(i). Pa(i) is therefore considered to be uniformly distributed on G; that has a deviation
of p(n) .

4, The designation of a point r € G as "good" is contingent upon the bounded discrepancy of its associated point set Py,
@(n) < C(r, €).n"t*,

5. For practical implementation, a common construction heuristic is defined by equation(14).

2mj

rj = 2cos 0

,1<j<s (14)
where p is the least prime satisfyingp > 2s + 3.

Two distribution plots were generated for 36 populations: one using a random method and the other using a good point set
method. As shown in Figure 2, the point distribution from the good point sequence is more uniform than that from the random
point sequence. Although the good point set requires more execution time, its impact on the overall algorithm cost is minimal.

3.3 | EAX Operator

Crossover, as a core mechanism in evolutionary computation, simulates biological genetic recombination through structured
information exchange between parent chromosomes to enhance solution quality. By randomly combining parental gene frag-
ments, offspring can inherit desirable traits while exploring new regions of the solution space. The neighbor-edge crossover
operator demonstrates unique advantages in combinatorial optimization: (1) Systematically preserves critical edge information
from parent solutions, ensuring solution feasibility; (2) The AB-cycle mechanism enables non-destructive recombination of
machine-task assignments; (3) Dynamic neighborhood evaluation guides the crossover process toward advantageous search
directions, accelerating convergence toward the Pareto optimal frontier. After population initialization, each individual stores in-
dividual storage information containing the scheduling sequences for all machines. For each machine, extract the task sequence
Tm.The process of finding the AB-cycle between parent A and parent B is shown in the figure 3.
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FIGURE 3 The process of forming the AB-cycle

After population initialization, the individual storage information contains the scheduling sequences for all machines. First,
two individuals are selected as parents A and B. Then, by traversing each scheduling sequence, adjacent edges are generated
and stored in the adjacent edge sets, labeled as Ex and Eg. Combining the adjacent edge assembly crossover operator, the
pseudocode is as follows: After constructing the intermediate solution in Step 3, its feasibility must be verified: First, check
against the constraint function to avoid conflicts in machine allocation or process sequence caused by path reorganization. If
conflicts or infeasibilities exist, trace back from the conflict point to reassign machines for conflicting tasks or adjust their
schedules. If tracing back fails to resolve the conflict, perform local search optimization to find the solution with the smallest
disturbance correction. After correction, merge the subtours for the new generation.

3.4 | Non-Dominant Sorting Framework Based on EAX Operators

Multi-objective optimization aims to achieve the coordinated optimization of multiple competing objectives. When
conflicts arise between objectives, the complexity of the problem increases significantly. The solution process for
such optimization problems inevitably generates a set of trade-off optimal solutions, collectively referred to as
the Pareto optimal solution set. A non-dominated relationship implies that if solution A is no worse than solution
B across all objectives and strictly outperforms B on at least one objective, then A dominates B. Through
dominance relation identification and recursive hierarchical partitioning, the algorithmic complexity is re- duced from
O(mn® to O(mn?) ,where m denotes the number of objectives and n represents the population size. This study
proposes a novel fusion of the NSGA-II with EAX operator to address workflow scheduling challenges in multi- objective
optimization scenarios. The merged framework leverages EAX’s edge recombination mechanism to enhance the global search
capability within the NSGA-I1 evolutionary architecture, achieving effective convergence toward high-quality Pareto-optimal
scheduling solutions. In workflow scheduling optimization, each candidate solution is encoded as a chromo- some, where
individual genes represent discrete workflow tasks. Allele values at each locus correspond to specific identifiers. The
evolutionary population consists of N chromosomes. During the crossover process, the EAX operator replaces the traditional
genetic crossover operator. Figure 4 illustrates the specific flowchart.

To ensure diversity in population distribution, the crowding distance is introduced. The crowding distance D;; between
chromosomes i and j within the same class is defined as follows.

Dij =|Makespan(i) — Makespan(j)|
+ [Esum(i) — Esum(j)! (15)

Cq¢ = min{Diy, Di, * + -, Din} (¥=K) (16)
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Algorithm 1 Edge Assembly Crossover (EAX)

Require: Two parent tours Pa and pPo
Ensure: Offspring tour

Let Ea and Ep be the edge sets of pa and pp respectively
Construct an undirected multigraph G from Eas and Ep
Step 1: Label edges

for each edge in E; do

=W N R

Label the edge as belonging to Ej
: end for
: for each edge in Ep do

g4 o u

©

Label the edge as belonging to Ep

9: end for

10: Step 2: Construct AB-cycles

11: Initialize an empty set E... for AB-cycles
12: while there are unvisited nodes in G do

13: Select a random unvisited node V as starting point
14: Initialize an empty cycle C

15: current — v

16: first — true

17: repeat

18: if first is true then

19: Select an edge (current,u) from Ea

20: first — false

21: else

22: Alternate between selecting edges from E; and Ep
23: end if

24: Add the selected edge to C

25: current — u

26: Mark the edge as visited

27: until return to the starting node Vv

28: if C is a valid AB-cycle (not consisting of two overlapping edges) then
29: Add C to E..:

30: end if

31: end while
32: Step 3: Construct intermediate solution

33: T — pa

34: for each AB-cycle in E,.. do

35: Remove edges in EsN AB-cycle from t
36: Add edges in Epn AB-cycle to t

37: end for

38: Step 4: Merge subtours

39: Identify all subtours in t

40: while number of subtours >1 do

41: Select the smallest subtour M

42: Find the optimal combination of edges e*e¥, e, e that minimizes:

—d(e) — d(e)) + d(e") + d(e")

43: Remove e* and e* from t
44: Add e*" and e to t

45: end while

46: Step 5: Output offspring
47: return the resulting tour t
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‘ Initializing parameters |
1)

|Initializing population Based on Good Set |
1

—>| Perform the NSGA-II |
1

| Select superior individuals as parents |

|Perform cross using the EAX cross operator‘

1

|Perform mutation on a portion individualsl

[ Iter = Iter +1 l

| Return the best solution |

End

FIGURE 4 Flowchart of proposed hybrid algorithm

Classify chromosomes based on dominance relationships, assigning ranks of 1, 2, ..., n. Calculate fitness using the following
formula based on their rank k and crowding distance. After computing each individual’s fitness, compare values to select
superior individuals for inheritance into the next generation population.

e
fit(i) = exp Tf() + L+ o a7
exp — 1

For generating a set of Pareto optimal solutions to multi-objective optimization problems, this paper proposes a method
combining the Entropy Weight Method (EWM) 8 and the Two-Objective Performance Selection by Similarity to Ideal Solution
(TOPSIS) °. The Entropy Weight Method is an objective weighting approach based on information entropy theory, which
determines weights through the variability of indicator data, thereby eliminating biases caused by subjective weighting. Lower
information entropy indicates reduced uncertainty in an indicator, resulting in a higher weight. Since the two objective functions
defined in this study exhibit higher individual fitness with smaller numerical values, equation 18 is required to normalize the
objective values within the Pareto solution set. In the formula, xj) represents the j™" objective value of the i solution. Next,
Equations 19 and 20 are used to calculate the information entropy. In Equation 20, e; represents the information entropy of the
j™ objective, and n denotes the number of solutions.Then, the target weights wj are calculated using information entropy to
eliminate subjective weighting bias, as shown in Equation 21.

r = max!x-) — Xij___ (18)
" max(x) — min(x)
Xii
pij = =, “ (19
j=1 %ii
n
1 >
&=—, Pilnpi (20)

i=1
1—¢g

Wit Ena- &) )
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FIGURES5 Visualization of index

After obtaining the respective weights, the rest procedure proceeds as follows: Step
1. Construct the weighted decision matrix by multiplying the standardized objective values by the
weights calculated using the entropy weight method, as shown in Equation 22, where rdj) de-notes the
standardized  decision matrix element and vdj) denotes the weighted matrix element; Step 2:
Determine the positive/negative ideal solutions using Equations 23 and 24. Step 3: Calculate the distance
of each solution to the positive and negative ideal solutions. The distance to the positive ideal solution is
given by Equation 25, and the distance to the negative ideal solution by Equation 26. Step 4: Calculate the
proximity, defined as C;. A higher proximity value indicates that the solution is closer to the positive ideal solution, signifying
superior overall performance of the scheme in multi-objective decision-making.

Vij = Wwj * Ij (22)
* = (max(vyj), max(vj), ..., max(Vmj)) (23)
A- = (min(vyj), min(vy), ..., Min(Vm;)) (24)

H
D=5 (i A (25)

=1

H
D = - (vij — A7)’ (26)

=1

D-
Ci= i (27)
D; + D,

After calculating the proximity scores for all solutions in the optimal solution set, they are sorted in descending order, with the
top-ranked solution selected as the final optimal solution. This method balances the dimensional differences and varying
importance of different objectives through standardization and weight allocation. Figure 5 presents a proximity-ranked bar
chart illustrating the quality of optimal solutions, where the horizontal axis displays the reordered solution I1Ds from highest to
lowest proximity, and the vertical axis represents proximity scores within the range from 0 to 1.

4 | EXPERIMENT
41 | Experimental Environment

To validate the effectiveness of the improved genetic algorithm in solving flexible job shop scheduling problems, we imple-
mented a computational framework using Python 3.9 within the PyCharm 2022.3 development environment. The experimental
platform utilized an AMD Ryzen 7 6800H processor (3.2 GHz base frequency, 4.7 GHz boost frequency) with integrated
Radeon Graphics, operating on a 64-bit Windows 11 Professional architecture. All numerical experiments were conducted on
this computational system. The parameters used in the experiment is shown.
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Parameter Value
Generations 500
Population size 200
Selection Tournament selection
Crossover probability 90%
Maximum depth for crossover 10
Mutation probability 10%
Maximum depth for mutation 5

42 | Experiment1

Experiment 1 focuses on solving single-objective problems by minimizing makespan. 40 benchmark instances of different
scales were used to verify the effectiveness of EAX-GA. These instances were LA01 — LA40%. In algorithm evaluation, FISP
instances of varying problem sizes were analyzed and compared with classical algorithms for solving FISP.

The results were compared in Table 3 other algorithms: Genetic Algorithm (GA),Hippopotamus Optimization Algorithm
(HO), Tabu Search(TS), chaos-based improved MPA (CIMPA)and Improved Scatter Search (ISS) proposed by Holland et al. 2%,
Amiri et al. %, Li et al. %, Zhang et al.?* and Wang et al.  respectively.

To mitigate randomness, each test was run 100 times. In most cases, the EAX-GA and CIMPA algorithms achieved relatively
low makespan values, demonstrating the most outstanding and stable performance overall. The ISS algorithm followed closely,
delivering comparable results to the former two in the majority of test instances. The HO and TS algorithms generally performed
at an intermediate level. In contrast, the traditional GA yielded the highest makespan values among all six algorithms in most
instances, indicating that its baseline version performed relatively poorly under the given experimental conditions.

For the FJSP problem, specially designed and enhanced hybrid algorithms such as EAX-GA and CIMPA, as well as intelli-
gent search strategies like ISS, significantly outperformed traditional metaheuristics and other heuristic methods. In particular,
EAX-GA and ISS exhibited exceptional robustness, with minimal fluctuations in solution quality across 40 test instances
of varying scales and characteristics, and rarely showed significant performance degradation. Although CIMPA performed
strongly in general, it exhibited noticeable deviations on specific instances such as LA06 and LA30 (with makespan val-
ues as high as 1596, substantially higher than other algorithms), suggesting slightly lower stability compared to EAX-GA and
ISS.When using the optimal solution as a benchmark, EAX-GA outperformed the remaining algorithms in 18 out of 40
benchmark instances. Even when not surpassing other algorithms, it still achieved relatively strong solutions. The superior per-
formance of EAX-GA is largely attributable to its effective crossover operator (EAX), which successfully inherits high-quality
task sequences and machine allocation patterns from parent solutions while leveraging the global search ability of genetic algo-
rithms. This enables a well-balanced trade-off between exploration and exploitation. These findings demonstrate that EAX-GA
exhibits greater robustness.

43 | Experiment?2

Experiment 2 focuses on solving multi-objective problems.Since the multi-objective model incorporates the total energy con-
sumption indicator, parameter settings are required to generate random parameters within the feasible operational range, as
shown in Table 4.

To validate the overall performance advantage of the proposed EAX-NSGA-II algorithm in multi-objective flexible manufac-
turing scheduling, this study designed ablation experiments to control variables and evaluate the independent contributions of
core components such as initialization of good set and the EAX crossover operator. To isolate the respective effects of greedy
initialization and the EAX operator, four contrasting algorithm versions were designed. The traditional NSGA-II serves as the
reference group, employing the Process Ordering Crossover (POX)(?”) mutation operator and classic crowding distance sort-
ing (%). In contrast to the heuristic construction logic of good-set initialization, greedy initialization randomly generates both
machine assignments for population individuals and process sequences. All algorithms maintained identical hyperparameter
settings, test case sets, and experimental procedures. With maximum completion time and total machine energy consumption
as optimization objectives, each combination underwent 40 independent runs.

To evaluate algorithm performance, optimal results were selected for comparative analysis. Line charts were plotted for each
algorithm version against both objective functions. In the legends: dotted lines represent the greedy-initialized traditional
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TABLE 3 LA Series Experimental Results Data Sheet

Scale EAX-GA HO TS CIMPA ISS GA
LAl 10x5 703 724 746 675 707 752
LA2 10x5 692 728 748 684 721 761
LA3 10x5 620 634 647 636 620 662
LA 4 10x5 632 635 646 621 625 667
LAS 10x5 599 614 622 593 595 635
LAG 15x5 819 861 878 926 821 892
LA7 15x5 856 873 881 916 848 901
LAS8 15x5 878 924 948 874 882 961
LA9 15x5 910 942 951 900 902 984
LA 10 15x5 956 965 979 958 923 1002
LA 11 20x5 1070 1105 1102 1222 1077 1148
LA 12 20x5 1039 1053 1061 1040 1039 1096
LA 13 20x5 1159 1163 1178 1150 1117 1197
LA 14 20x5 1302 1305 1310 1292 1281 1323
LA 15 20x5 1210 1231 1227 1281 1212 1251
LA 16 20x5 1034 1049 1052 1038 1015 1092
LA 17 20x5 836 867 875 842 838 906
LA 18 20x5 928 965 992 923 930 1009
LA 19 20x5 919 958 971 930 920 987
LA 20 20x5 953 978 979 951 959 1021
LA21 20x5 1178 1209 1217 1193 1169 1234
LA 22 20x5 1089 1129 1131 1094 1105 1193
LA 23 20x5 1158 1162 1154 1130 1116 1199
LA 24 20x5 1078 1082 1075 1068 1070 1112
LA 25 20x5 1062 1129 1134 1077 1106 1181
LA 26 20x5 1399 1422 1429 1396 1373 1474
LA 27 20x5 1488 1447 1459 1428 1407 1533
LA 28 20x5 1400 1466 1487 1400 1439 1521
LA 29 20x5 1370 1392 1415 1388 1375 1452
LA 30 20x5 1488 1485 1478 1596 1437 1545
LA 31 20x5 1856 1878 1904 2000 1829 1961
LA 32 20x5 1924 2039 2044 2072 1944 2128
LA 33 20x5 1912 1947 1963 1916 1878 2001
LA 34 20x5 1866 2020 2033 1864 1966 2085
LA 35 20x5 2022 2085 2118 2068 2025 2167
LA 36 20x5 1430 1511 1519 1430 1462 1583
LA 37 20x5 1644 1693 1684 1624 1635 1708
LA 38 20x5 1420 1479 1482 1475 1421 1544
LA 39 20x5 1450 1495 1498 1482 1464 1571
LA 40 20x5 1434 1506 1525 1434 1466 1576

NSGA-II; solid lines represent the good-set-initialized traditional NSGA-I1I; dashed lines represent the good-set-initialized
EAX-NSGA-I1I algorithm; and dotted-dashed lines represent the EAX-NSGA-II algorithm with greedy initialization. Figure 6
illustrates the trend of maximum completion time versus iteration count for different algorithms solving the MKO08 problem
instance. During the initial iterations from 0 to 25 generations, the solid line and dotted line exhibit smaller decreases than the
dashed line and dashed-dot line. This demonstrates the advantage of EAX in rapidly eliminating combinations of adjacent edges
with severe process conflicts and prolonged machine idle times. Around generation 30, the dashed line’s makespan value
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TABLE 4 The energy consumption for machines

Machine Processing Efficiency Standby Efficiency
M1 20 05
M2 18 0.3
M3 1.6 0.3
M4 24 04
M5 24 04
M6 41 0.6
M7 35 0.8
M8 41 0.9
M9 2.8 0.3
M10 2.7 0.3
== ves NSAG-TT+Greedy initialization . «ss0s NSAG-TI+Greedy initialization
620 —NSAG-TH+Good-set NSAG-TI+Good-set

1300 4 = = =NSAG-I with EAX + Good-set

610 -

NSAG-II wi

X
Grees 8

1200 1

11001

590 1

Makespan

1000 A

Consumption

580 A 900 4

570 = =1 L

800 -

L._._._.E_._,_._._,l
560 - L IR 700 A

0 100 200 300 200 0 100 200 300 400 500
Iterations Iterations
(a) Comparison of Makespan (b) Comparison of Total Energy Consumption Results

FIGURE 6 Algorithm Results Comparison Chart

reached approximately 575, the lowest among the four algorithms. This result demonstrates a synergistic effect between the
good-set-initialization strategy and EAX’s neighbor edge screening mechanism.

Figure 6(b) demonstrates that EAX can precisely identify and retain low-energy edge patterns from parent solutions during
crossover. Furthermore, through its edge exploration strategy for AB loop paths, EAX achieves optimization by inheriting
effective structures from parent generations. In contrast, traditional algorithms lack this capability, relying solely on incremental
genetic adjustments per generation for energy optimization, resulting in a gradually declining curve. During the late stages
between generations 300 and 500, the dashed line and dotted line converge to a steady state early on. The horizontal line enters
steady-state convergence around generation 300, while the dotted line does not reach convergence until approximately
generation 490, resulting in a 63.26% difference in temporal efficiency.

5 | CONCLUSIONS

Numerous studies have collectively established an algorithmic framework for multi-objective FISP: from fundamental operator
refinements to complex scenario extensions, and from single-objective optimization to multi-objective trade-offs, progressively
advancing algorithms from theory to practical application. Building upon this foundation, this paper proposes the EAX-GA
algorithm for multi-objective scheduling challenges in flexible manufacturing workshops. This approach integrates a neighbor-
edge crossover operator with optimal point set initialization. The improved algorithm employs AB-cycle recombination,
systematically preserving edge structures during crossover through depth-first search identification of minimal conflict loops,
thereby mitigating the disruptive effects observed in traditional genetic algorithms. Dynamic AB-cycle path expansion further
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optimizes the global-local search balance, enabling structured exploration of the solution space. Experiments on benchmark
instances validate that EAX-GA outperforms comparison algorithms in both convergence speed and solution quality.

Future research will focus on deepening the following aspects: 1. The experiments primarily utilized small-to-medium-scale
MK and LA series test cases. For large-scale scenarios, the balance between the algorithm’s time complexity and solution qual-
ity requires further validation. 2. The current model does not account for critical industrial dimensions such as transportation
energy consumption, startup/shutdown energy costs, and equipment activation/deactivation energy expenditure. There is room
for improvement in the model’s practical applicability. Future work will prioritize machine learning ensembles to enhance
algorithm adaptability. Reinforcement learning-driven cross-control: Develop dynamic parameter adjustment mechanisms us-
ing deep reinforcement learning to autonomously optimize cross-rate and mutation strategies based on real-time evolutionary
patterns. Neural-assisted feasibility prediction: Implement graph neural networks (GNNs) during AB-cycle construction to pre-
evaluate edge restructuring feasibility, reducing computational time in large-scale scheduling.
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